概述
转载请注明出处:http://blog.csdn.net/l1028386804/article/details/79441007
一、前言
本博文是基于《Storm之——Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(环境搭建篇)》,请先阅读《Storm之——Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(环境搭建篇)》
首先我们启动服务器上的Storm、Kafka、Flume、Zookeeper和MySQL,具体参见博文《Storm之——Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(环境搭建篇)》。
二、简单介绍
为了方便,这里我们只是简单的向/home/flume/log.log中追加单词,每行一个单词,利用Storm接收每个单词,将单词计数更新到数据库,具体的逻辑为,如果数据库中没有相关单词,则将数据插入数据库,如果存在相关单词,则更新数据库中的计数。具体SQL逻辑参见博文《MySQL之——实现无数据插入,有数据更新》
三、程序实现
1、创建项目
创建Maven项目结构如下:
2、配置pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.lyz</groupId>
<artifactId>storm-kafka-mysql</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka</artifactId>
<version>1.1.0</version>
</dependency>
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.28</version>
</dependency>
<dependency>
<groupId>c3p0</groupId>
<artifactId>c3p0</artifactId>
<version>0.9.1.2</version>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka_2.12</artifactId>
<version>1.0.0</version>
<exclusions>
<exclusion>
<groupId>org.apache.zookeeper</groupId>
<artifactId>zookeeper</artifactId>
</exclusion>
<exclusion>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
</exclusion>
<exclusion>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<!--告诉运行的主类是哪个,注意根据自己的情况,下面的包名做相应的修改-->
<mainClass>com.lyz.storm.StormTopologyDriver</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
</project>
3、实现单词分割计数的MySplitBolt类
package com.lyz.storm.bolt;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
/**
* 这个Bolt模拟从kafkaSpout接收数据,并把数据信息发送给MyWordCountAndPrintBolt的过程。
* @author liuyazhuang
*
*/
public class MySplitBolt extends BaseBasicBolt {
private static final long serialVersionUID = 4482101012916443908L;
@Override
public void execute(Tuple input, BasicOutputCollector collector) {
//1、数据如何获取
//如果StormTopologyDriver中的spout配置的是MyLocalFileSpout,则用的是declareOutputFields中的juzi这个key
//byte[] juzi = (byte[]) input.getValueByField("juzi");
//2、这里用这个是因为StormTopologyDriver这个里面的spout用的是KafkaSpout,而KafkaSpout中的declareOutputFields返回的是bytes,所以下面用bytes,这个地方主要模拟的是从kafka中获取数据
byte[] juzi = (byte[]) input.getValueByField("bytes");
//2、进行切割
String[] strings = new String(juzi).split(" ");
//3、发送数据
for (String word : strings) {
//Values对象帮我们生成一个list
collector.emit(new Values(word,1));
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word","num"));
}
}
4、实现入库操作的MyWordCountAndPrintBolt类
package com.lyz.storm.bolt;
import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import java.util.Map;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.BasicOutputCollector;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseBasicBolt;
import org.apache.storm.tuple.Tuple;
import com.lyz.storm.db.DBProvider;
/**
* 用于统计分析,并且把统计分析的结果存储到mysql中。
* @author liuyazhuang
*
*/
public class MyWordCountAndPrintBolt extends BaseBasicBolt {
private static final long serialVersionUID = 5564341843792874197L;
private DBProvider provider;
@Override
public void prepare(Map stormConf, TopologyContext context) {
//连接redis---代表可以连接任何事物
provider = new DBProvider();
super.prepare(stormConf,context);
}
@Override
public void execute(Tuple input, BasicOutputCollector collector) {
String word = (String) input.getValueByField("word");
Integer num = (Integer) input.getValueByField("num");
Connection conn = null;
Statement stmt = null;
try {
conn = provider.getConnection();
stmt = conn.createStatement() ;
stmt.executeUpdate("INSERT INTO word_count (word, count) VALUES ('" + word + "', " + num + ") ON DUPLICATE KEY UPDATE count = count + " + num) ;
} catch (SQLException e) {
e.printStackTrace();
}finally{
if(stmt != null){
try {
stmt.close();
stmt = null;
} catch (Exception e2) {
e2.printStackTrace();
}
}
if(conn != null){
try {
conn.close();
conn = null;
} catch (Exception e2) {
e2.printStackTrace();
}
}
}
}
@Override
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
//todo 不需要定义输出的字段
}
}
5、实现操作数据库的DBProvider类
package com.lyz.storm.db;
import java.beans.PropertyVetoException;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import com.mchange.v2.c3p0.ComboPooledDataSource;
/**
* JDBC操作数据库
* @author liuyazhuang
*
*/
public class DBProvider {
private static ComboPooledDataSource source ;
private static final String DB_DRIVER = "com.mysql.jdbc.Driver";
private static final String DB_URL = "jdbc:mysql://127.0.0.1:3306/sharding_0?useUnicode=true&characterEncoding=UTF-8&useOldAliasMetadataBehavior=true";
private static final String USER = "root";
private static final String PASSWORD = "root";
private static Connection connection;
static{
try {
source = new ComboPooledDataSource();
source.setDriverClass(DB_DRIVER);
source.setJdbcUrl(DB_URL);
source.setUser(USER);
source.setPassword(PASSWORD);
source.setInitialPoolSize(10);
source.setMaxPoolSize(20);
source.setMinPoolSize(5);
source.setAcquireIncrement(1);
source.setMaxIdleTime(3);
source.setMaxStatements(3000);
source.setCheckoutTimeout(2000);
} catch (PropertyVetoException e) {
e.printStackTrace();
}
}
/**
* 获取数据库连接
*
* @return 数据库连接
*/
public Connection getConnection() throws SQLException {
connection = source.getConnection();
return connection;
}
//关闭操作
public static void closeConnection(Connection con){
if(con!=null){
try {
con.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
public static void closeResultSet(ResultSet rs){
if(rs!=null){
try {
rs.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
public static void closePreparedStatement(PreparedStatement ps){
if(ps!=null){
try {
ps.close();
} catch (SQLException e) {
e.printStackTrace();
}
}
}
}
6、实现程序的入口类StormTopologyDriver
package com.lyz.storm;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.StormTopology;
import org.apache.storm.kafka.KafkaSpout;
import org.apache.storm.kafka.SpoutConfig;
import org.apache.storm.kafka.ZkHosts;
import org.apache.storm.topology.TopologyBuilder;
import com.lyz.storm.bolt.MySplitBolt;
import com.lyz.storm.bolt.MyWordCountAndPrintBolt;
/**
* 这个Driver使Kafka、strom、mysql进行串联起来。
*
* 这个代码执行前需要创建kafka的topic,创建代码如下:
* [root@liuyazhuang kafka]# bin/kafka-topics.sh --create --zookeeper liuyazhuang1:2181 --replication-factor 1 -partitions 3 --topic wordCount
*
* 接着还要向kafka中传递数据,打开一个shell的producer来模拟生产数据
* [root@liuyazhuang kafka]# bin/kafka-console-producer.sh --broker-list liuyazhuang:9092 --topic wordCount
* 接着输入数据
*
* @author liuyazhuang
*/
public class StormTopologyDriver {
public static void main(String[] args) throws Exception {
//1、准备任务信息
TopologyBuilder topologyBuilder = new TopologyBuilder();
SpoutConfig spoutConfig = new SpoutConfig(new ZkHosts("192.168.209.121:2181"),"wordCount","/wordCount","wordCount");
topologyBuilder.setSpout("KafkaSpout",new KafkaSpout(spoutConfig),2);
topologyBuilder.setBolt("bolt1",new MySplitBolt(),4).shuffleGrouping("KafkaSpout");
topologyBuilder.setBolt("bolt2",new MyWordCountAndPrintBolt(),2).shuffleGrouping("bolt1");
//2、任务提交
Config config = new Config();
config.setNumWorkers(2);
StormTopology stormTopology = topologyBuilder.createTopology();
if(args != null && args.length > 0){
StormSubmitter.submitTopology(args[0], config, topologyBuilder.createTopology());
}else{
//本地模式
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("wordcount",config,stormTopology);
}
}
}
7、创建数据库
执行如下脚本创建数据库
create database sharding_0;
CREATE TABLE `word_count` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`word` varchar(255) DEFAULT '',
`count` int(11) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `word` (`word`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=233 DEFAULT CHARSET=utf8;
至此,我们的程序案例编写完成。
四、温馨提示
大家可以到链接http://download.csdn.net/download/l1028386804/10269075下载完整的Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(程序案例篇)源代码
最后
以上就是整齐星星为你收集整理的Storm之——Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(程序案例篇)的全部内容,希望文章能够帮你解决Storm之——Storm+Kafka+Flume+Zookeeper+MySQL实现数据实时分析(程序案例篇)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复