概述
技术栈 | 传送门 |
JAVA 基础 | 手撸架构,Java基础面试100问_vincent-CSDN博客 |
JAVA 集合 | 手撸架构,JAVA集合面试60问_vincent-CSDN博客 |
JVM 虚拟机 | 手撸架构,JVM面试30问_vincent-CSDN博客 |
并发编程 | 手撸架构,并发编程面试123问_vincent-CSDN博客 |
Spring | 手撸架构,Spring面试63问_vincent-CSDN博客 |
Spring cloud | 手撸架构,Spring cloud面试45问_vincent-CSDN博客 |
SpringBoot | 手撸面试,Spring Boot面试41问_vincent-CSDN博客 |
Netty 与 RPC | 手撸架构,Netty 与 RPC面试48问_vincent-CSDN博客 |
Doubo | 手撸架构,Dubbo面试49问_vincent-CSDN博客 |
Redis | 手撸架构,Redis面试41问_vincent-CSDN博客 |
Zookeeper | 手撸架构,Zookeeper面试27问_vincent-CSDN博客 |
Mysql | 手撸架构,Mysql 面试126问_vincent-CSDN博客 |
MyBatis | 手撸架构,MyBatis面试42问_vincent-CSDN博客 |
MongoDB | 手撸架构,MongDB 面试50问_vincent-CSDN博客 |
Elasticsearch | 手撸架构,Elasticsearch 面试25问_vincent-CSDN博客 |
RabbitMQ | 手撸架构,RabbitMQ 面试49问_vincent-CSDN博客 |
Kafka | 手撸架构,Kafka 面试42问_vincent-CSDN博客 |
Docker | 手撸架构,Docker 面试25问_vincent-CSDN博客 |
Nginx | 手撸架构,Nginx 面试40问_vincent-CSDN博客 |
算法 | 常用排序算法总结(1)-- 比较排序_vincent-CSDN博客_比较排序 常用排序算法总结(2)-- 非比较排序算法_vincent-CSDN博客_非比较排序的算法有 |
分布式事务 | 分布式事务解决方案(总览)_vincent-CSDN博客 |
HTTP | 太厉害了,终于有人能把TCP/IP 协议讲的明明白白了_vincent-CSDN博客_tcp和ip |
什么是RDBMS?
关系数据库管理系统(Relational Database Management System:RDBMS)是指包括相互联系的逻辑组织和存取这些数据的一套程序 (数据库管理系统软件)。关系数据库管理系统就是管理关系数据库,并将数据逻辑组织的系统。
- 高度组织化结构化数据
- 结构化查询语言(SQL) (SQL)
- 数据和关系都存储在单独的表中。
- 数据操纵语言,数据定义语言
- 严格的一致性
- 基础事务
什么是NoSQL?
NoSQL,指的是非关系型的数据库。NoSQL有时也称作Not Only SQL的缩写,是对不同于传统的关系型数据库的数据库管理系统的统称。
NoSQL用于超大规模数据的存储。(例如谷歌或Facebook每天为他们的用户收集万亿比特的数据)。这些类型的数据存储不需要固定的模式,无需多余操作就可以横向扩展。
- 代表着不仅仅是SQL
- 没有声明性查询语言
- 没有预定义的模式
- 键 - 值对存储,列存储,文档存储,图形数据库
- 最终一致性,而非ACID属性
- 非结构化和不可预知的数据
- CAP定理
- 高性能,高可用性和可伸缩性
NoSQL的优点/缺点
优点:
- 高可扩展性
- 分布式计算
- 低成本
- 架构的灵活性,半结构化数据
- 没有复杂的关系
缺点:
- 没有标准化
- 有限的查询功能(到目前为止)
- 最终一致是不直观的程序
NoSQL的分类和典型的产品
- 键值(KV)存储:Memcached、Redis
- 列存储(column-oriented):HBASE(新浪,360)、Cassandra(200台服务器集群)
- 文档数据库(document-oriented):MongoDB(最接近关系型数据库的NoSQL)
- 图形存储(Graph):Neo4j
MongoDB简介
MongoDB 是由 C++语言编写的,是一个基于分布式文件存储的开源数据库系统。在高负载的情
况下,添加更多的节点,可以保证服务器性能。MongoDB 旨在为 WEB 应用提供可扩展的高性能
数据存储解决方案。
MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成。MongoDB 文档类似
于 JSON 对象。字段值可以包含其他文档,数组及文档数组
MongoDB 特点
- MongoDB 是一个面向文档存储的数据库,操作起来比较简单和容易。
- 在 MongoDB 记录中设置任何属性的索引 (如:FirstName="Sameer",Address="8 Gandhi Road")来实现更快的排序。
- 通过本地或者网络创建数据镜像,这使得 MongoDB 有更强的扩展性。
- 如果负载的增加(需要更多的存储空间和更强的处理能力) ,它可以分布在计算机网络中的其他节点上这就是所谓的分片。 · Mongo 支持丰富的查询表达式。查询指令使用 JSON 形式的标记,可轻易查询文档中内嵌的对象及数组。
- MongoDb 使用 update()命令可以实现替换完成的文档(数据)或者一些指定的数据字段 。
- Mongodb 中的 Map/reduce 主要是用来对数据进行批量处理和聚合操作。
- Map 和 Reduce。Map 函数调用 emit(key,value)遍历集合中所有的记录,将 key 与 value 传 给Reduce 函数进行处理。
- Map 函数和 Reduce 函数是使用 Javascript 编写的,并可以通过 db.runCommand 或mapReduce 命令来执行 MapReduce 操作
- GridFS 是 MongoDB 中的一个内置功能,可以用于存放大量小文件。
- MongoDB 允许在服务端执行脚本,可以用 Javascript 编写某个函数,直接在服务端执行,也可以把函数的定义存储在服务端,下次直接调用即可
功能
- 面向集合的存储:适合存储对象及JSON形式的数据。
- 动态查询:Mongo支持丰富的查询表达式。查询指令使用JSON形式的标记,可轻易查询文档中内嵌的对象及数组。
- 完整的索引支持:包括文档内嵌对象及数组。Mongo的查询优化器会分析查询表达式,并生成一个高效的查询计划。
- 查询监视:Mongo包含一个监视工具用于分析数据库操作的性能。
- 复制及自动故障转移:Mongo数据库支持服务器之间的数据复制,支持主-从模式及服务器之间的相互复制。复制的主要目标是提供冗余及自动故障转移。
- 高效的传统存储方式:支持二进制数据及大型对象(如照片或图片)
- 自动分片以支持云级别的伸缩性:自动分片功能支持水平的数据库集群,可动态添加额外的机器。
在哪些场景使用MongoDB
- 游戏场景,使用 MongoDB 存储游戏用户信息,用户的装备、积分等直接以内嵌文档的形式存储,方便查询、更新
- 物流场景,使用 MongoDB 存储订单信息,订单状态在运送过程中会不断更新,以 MongoDB 内嵌数组的形式来存储,一次查询就能将订单所有的变更读取出来。
- 社交场景,使用 MongoDB 存储存储用户信息,以及用户发表的朋友圈信息,通过地理位置索引实现附近的人、地点等功能
- 物联网场景,使用 MongoDB 存储所有接入的智能设备信息,以及设备汇报的日志信息,并对这些信息进行多维度的分析
- 视频直播,使用 MongoDB 存储用户信息、礼物信息等
MongoDB要注意的问题
1 因为MongoDB是全索引的,所以它直接把索引放在内存中,因此最多支持2.5G的数据。如果是64位的会更多。
2 因为没有恢复机制,因此要做好数据备份
3 因为默认监听地址是127.0.0.1,因此要进行身份验证,否则不够安全;如果是自己使用,建议配置成localhost主机名
4 通过GetLastError确保变更。
数据库的整体结构组成如下:
键值对–》文档–》集合–》数据库
MongoDB的文件单个大小不超过4M,但是新版本后可提升到16M
MongoDB中的key命名规则如下:
- '