我是靠谱客的博主 健康纸飞机,最近开发中收集的这篇文章主要介绍基于Netty和Zookeeper实现RPC框架,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

前言:所谓RPC是一种通过网络从远程计算机请求服务,而不必了解底层技术的协议,客户端不在乎传输层使用TCP或者UDP,不在意IO模型选择select还是epoll。现在典型的RPC框架有:Thrift,Dubbo等。接下来将参考一些dubbo的东西,展示如何基于Netty和zookeeper开发实现一个高性能RPC框架,同时结合问题分析解决方法

一,定义RPC请求和响应消息结构。
1,首先是请求类。必须包含的是:(1)类名(2)方法名(3)参数(4)参数结构。然后为了其他的一些考虑,我们可以加入其他的特性。例如:本次请求ID,服务的版本号等。实现如下:

public class RpcRequest {

    private String requestId;
    private String interfaceName;
    private String serviceVersion;
    private String methodName;
    private Class<?>[] parameterTypes;
    private Object[] parameters;

    //省略get和set
}

2,响应类。包括(1)请求ID(2)异常信息(3)执行结果

public class RpcResponse {

    private String requestId;
    private Exception exception;
    private Object result;

    public boolean hasException() {
        return exception != null;
    }

    //省略set和get
}

二,定义消息协议和消息encode和decode
1,消息协议:
一个消息报文分为两部分:(4bytes)消息长度+消息主体。

2,TCP半包和粘包问题
发生的原因:
(1)应用程序写入的字节大小大于套接字发送的缓冲区大小
(2)进行MSS大小的TCP分段
(3)以太网的payload大于MTU进行IP分片
(4)接收端读取速度小于接受速度
Netty内置了LengthFieldBasedFrameDecoder处理读半包问题,但是为了了解如何处理,选择了使用ByteToMessageDecoder。

3,Decoder
因为选择ByteToMessageDecoder,所以会出现读半包问题,那么我们可以这样来解决:由于我们定义了4个byte来存储消息长度,所以如果可读byte小于4和消息主体长度跟消息长度不吻合,那么就先不读,以为这是个半包,可以等到下次再来读取。

public class RpcDecoder extends ByteToMessageDecoder {

    private Class<?> genericClass;

    public RpcDecoder(Class<?> genericClass) {
        this.genericClass = genericClass;
    }

    @Override
    public void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws Exception {
        if (in.readableBytes() < 4) {
            return;
        }
        in.markReaderIndex();
        int dataLength = in.readInt();
        if (in.readableBytes() < dataLength) {
            in.resetReaderIndex();
            return;
        }
        byte[] data = new byte[dataLength];
        in.readBytes(data);
        out.add(SerializationUtil.deserialize(data, genericClass));
    }
}

4,Encoder

public class RpcEncoder extends MessageToByteEncoder {

    private Class<?> genericClass;

    public RpcEncoder(Class<?> genericClass) {
        this.genericClass = genericClass;
    }

    @Override
    public void encode(ChannelHandlerContext ctx, Object in, ByteBuf out) throws Exception {
        if (genericClass.isInstance(in)) {
            byte[] data = SerializationUtil.serialize(in);
            out.writeInt(data.length);
            out.writeBytes(data);
        }
    }
}

5,使用Protostuff序列化工具
原生的序列化性能效率较低,产生的码流较大,所以采用了Protostuff。

public class SerializationUtil {

    private static Map<Class<?>, Schema<?>> cachedSchema = new ConcurrentHashMap<>();

    private static Objenesis objenesis = new ObjenesisStd(true);

    private SerializationUtil() {
    }

    /**
     * 序列化(对象 -> 字节数组)
     */
    @SuppressWarnings("unchecked")
    public static <T> byte[] serialize(T obj) {
        Class<T> cls = (Class<T>) obj.getClass();
        LinkedBuffer buffer = LinkedBuffer.allocate(LinkedBuffer.DEFAULT_BUFFER_SIZE);
        try {
            Schema<T> schema = getSchema(cls);
            return ProtostuffIOUtil.toByteArray(obj, schema, buffer);
        } catch (Exception e) {
            throw new IllegalStateException(e.getMessage(), e);
        } finally {
            buffer.clear();
        }
    }

    /**
     * 反序列化(字节数组 -> 对象)
     */
    public static <T> T deserialize(byte[] data, Class<T> cls) {
        try {
            T message = objenesis.newInstance(cls);
            Schema<T> schema = getSchema(cls);
            ProtostuffIOUtil.mergeFrom(data, message, schema);
            return message;
        } catch (Exception e) {
            throw new IllegalStateException(e.getMessage(), e);
        }
    }

    @SuppressWarnings("unchecked")
    private static <T> Schema<T> getSchema(Class<T> cls) {
        Schema<T> schema = (Schema<T>) cachedSchema.get(cls);
        if (schema == null) {
            schema = RuntimeSchema.createFrom(cls);
            cachedSchema.put(cls, schema);
        }
        return schema;
    }
}

三,zookeeper注册中心
1,Provider注册到ZK
Provider将自己的信息注册到ZK的节点,这点类似Dubbo,由于可能设计到多个服务提供方,所以需要提供负载均衡策略,这里借鉴了Dubbo的随机负载均衡策略。后续会继续增加不同的策略。

public class ZooKeeperServiceRegistry implements ServiceRegistry {

    private static final Logger LOGGER = LoggerFactory.getLogger(ZooKeeperServiceRegistry.class);

    private final ZkClient zkClient;

    public ZooKeeperServiceRegistry(String zkAddress) {
        // 创建 ZooKeeper 客户端
        zkClient = new ZkClient(zkAddress, Constant.ZK_SESSION_TIMEOUT, Constant.ZK_CONNECTION_TIMEOUT);
        LOGGER.debug("connect zookeeper");
    }

    @Override
    public void register(String serviceName, String serviceAddress, int weight) {
        // 创建 registry 节点(持久)
        String registryPath = Constant.ZK_REGISTRY_PATH;
        if (!zkClient.exists(registryPath)) {
            zkClient.createPersistent(registryPath);
            LOGGER.debug("create registry node: {}", registryPath);
        }
        // 创建 service 节点(持久)
        String servicePath = registryPath + "/" + serviceName;
        if (!zkClient.exists(servicePath)) {
            zkClient.createPersistent(servicePath);
            LOGGER.debug("create service node: {}", servicePath);
        }
        // 创建 address 节点(临时)
        String addressPath = servicePath + "/address-";
        String addressNode = zkClient.createEphemeralSequential(addressPath, serviceAddress);
        LoadBalance.add(addressPath, weight);
        LOGGER.debug("create address node: {}", addressNode);
    }
}

2,消费方寻找ZK上的服务

public class ZooKeeperServiceDiscovery implements ServiceDiscovery {

    private static final Logger LOGGER = LoggerFactory.getLogger(ZooKeeperServiceDiscovery.class);

    private String zkAddress;

    public ZooKeeperServiceDiscovery(String zkAddress) {
        this.zkAddress = zkAddress;
    }

    @Override
    public String discover(String name) {
        // 创建 ZooKeeper 客户端
        ZkClient zkClient = new ZkClient(zkAddress, Constant.ZK_SESSION_TIMEOUT, Constant.ZK_CONNECTION_TIMEOUT);
        LOGGER.debug("connect zookeeper");
        try {
            // 获取 service 节点
            String servicePath = Constant.ZK_REGISTRY_PATH + "/" + name;
            if (!zkClient.exists(servicePath)) {
                throw new RuntimeException(String.format("can not find any service node on path: %s", servicePath));
            }
            List<String> addressList = zkClient.getChildren(servicePath);
            if (CollectionUtil.isEmpty(addressList)) {
                throw new RuntimeException(String.format("can not find any address node on path: %s", servicePath));
            }
            // 获取 address 节点
            String address;
            int size = addressList.size();
            if (size == 1) {
                // 若只有一个地址,则获取该地址
                address = addressList.get(0);
                LOGGER.debug("get only address node: {}", address);
            } else {
                // 若存在多个地址,则根据负载均衡算法获取一个地址
                address = LoadBalance.Random_LoadBalance(addressList);
                LOGGER.debug("get random address node: {}", address);
            }
            // 获取 address 节点的值
            String addressPath = servicePath + "/" + address;
            return zkClient.readData(addressPath);
        } finally {
            zkClient.close();
        }
    }
}

四,服务端接收消息后,通过反射调用

public class RpcServerHandler extends SimpleChannelInboundHandler<RpcRequest> {

    private static final Logger LOGGER = LoggerFactory.getLogger(RpcServerHandler.class);

    private final Map<String, Object> handlerMap;

    public RpcServerHandler(Map<String, Object> handlerMap) {
        this.handlerMap = handlerMap;
    }

    @Override
    public void channelRead0(final ChannelHandlerContext ctx, RpcRequest request) throws Exception {
        // 创建并初始化 RPC 响应对象
        RpcResponse response = new RpcResponse();
        response.setRequestId(request.getRequestId());
        try {
            Object result = handle(request);
            response.setResult(result);
        } catch (Exception e) {
            LOGGER.error("handle result failure", e);
            response.setException(e);
        }
        // 写入 RPC 响应对象并自动关闭连接
        ctx.writeAndFlush(response).addListener(ChannelFutureListener.CLOSE);
    }

    private Object handle(RpcRequest request) throws Exception {
        // 获取服务对象
        String serviceName = request.getInterfaceName();
        String serviceVersion = request.getServiceVersion();
        if (StringUtil.isNotEmpty(serviceVersion)) {
            serviceName += "-" + serviceVersion;
        }
        Object serviceBean = handlerMap.get(serviceName);
        if (serviceBean == null) {
            throw new RuntimeException(String.format("can not find service bean by key: %s", serviceName));
        }
        // 获取反射调用所需的参数
        Class<?> serviceClass = serviceBean.getClass();
        String methodName = request.getMethodName();
        Class<?>[] parameterTypes = request.getParameterTypes();
        Object[] parameters = request.getParameters();
        // 执行反射调用
//        Method method = serviceClass.getMethod(methodName, parameterTypes);
//        method.setAccessible(true);
//        return method.invoke(serviceBean, parameters);
        // 使用 CGLib 执行反射调用
        FastClass serviceFastClass = FastClass.create(serviceClass);
        FastMethod serviceFastMethod = serviceFastClass.getMethod(methodName, parameterTypes);
        return serviceFastMethod.invoke(serviceBean, parameters);
    }

    @Override
    public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
        LOGGER.error("server caught exception", cause);
        ctx.close();
    }
}

六,结尾
现在项目还不够完善,没有考虑高并发的情况以及没有提供异步处理,客户端也没有提供服务断线后的处理策略,在接下来这阵子将进行升级。

Git
https://github.com/wacxt/NettyRpc

参考资料:
(1)《Netty权威编程》

最后

以上就是健康纸飞机为你收集整理的基于Netty和Zookeeper实现RPC框架的全部内容,希望文章能够帮你解决基于Netty和Zookeeper实现RPC框架所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部