概述
学习资料:
王乐平、策爷冬令营讲义。
多项式技巧
牛顿迭代(泰勒展开)
很多时候推式子就是取对数、积分,exp和泰勒展开的结合
泰勒展开在mod xn意义下只需要保留前n项,性质非常优美。
而插值,对于一个k次的多项式,必须要k + 1个值的代入,如果只求该多项式的前n项,也不能只用
n + 1个点代入
这是一篇非常好的博客。特别是把所有多项式操作都用泰勒展开推导,以后就不用再死记,也不用担心推错了!from yyb
复合逆
拉格朗日反演
注意当f(x)本身不存在逆元的时候,可以求f(x) / x的逆元
否则(x / f(x))n 的第n - 1
项为0
例题
直接推生成函数
【BZOJ3625】小朋友和二叉树
from cz_xuyixuan
注意这道题是普通生成函数,不是指数型生成函数
代码只有main函数,多项式模板在下面
int n,m;
vector <int> fact,inv_fact;
vector <int> f,g,h,tmp;
void pre_calc(){
// g[0] = 1;
rep(i,0,m){
// g[i] = mul(g[i],inv_fact[i]);
sub(f[i],mul(g[i],4));
// cout<<f[i]<<" ";
}
f[0] = 1;
// cout<<endl;
f = sqrt(f);
add(f[0],1);
f = inverse(f);
rep(i,0,m) f[i] = mul(f[i],2);
}
int main(){
scanf("%d %d",&n,&m);
f.resize(m + 1) , g.resize(m + 1);
rep(i,1,n){
int x;
scanf("%d",&x);
if ( x <= m ) g[x]++;
}
pre_calc();
rep(i,1,m){
// f[i] = mul(f[i],fact[i]);
printf("%dn",f[i]);
}
}
bzoj 3684 大朋友和多叉树
复合逆裸题。
注意F(x) / x才可以求逆
int n,m;
poly fact,inv_fact;
poly f,g,h,tmp;
void pre_calc(){
add(g[0],1);
g = inverse(g);
g = power(g,n);
int ans = mul(power(n,mod - 2),g[n - 1]);
cout<<ans<<endl;
}
int main(){
scanf("%d %d",&n,&m);
f.resize(n + 1) , g.resize(n + 1);
rep(i,1,m){
int x;
scanf("%d",&x);
g[x - 1] = mod - 1;
}
pre_calc();
}
多项式模板
注意事项:
求导和积分多项式的次数变化
开根号如果常数项不为完全平方数,需要用二次剩余开根号的模板。详见或这位大佬
求逆常数项不能为0 , 否则不存在逆元
special thanks to wxh010910
#include<bits/stdc++.h>
using namespace std;
#define rep(i,l,r) for(register int i = l ; i <= r ; i++)
#define repd(i,r,l) for(register int i = r ; i >= l ; i--)
#define rvc(i,S) for(register int i = 0 ; i < (int)S.size() ; i++)
#define rvcd(i,S) for(register int i = ((int)S.size()) - 1 ; i >= 0 ; i--)
#define fore(i,x)for (register int i = head[x] ; i ; i = e[i].next)
#define forup(i,l,r) for (register int i = l ; i <= r ; i += lowbit(i))
#define fordown(i,id) for (register int i = id ; i ; i -= lowbit(i))
#define pb push_back
#define prev prev_
#define stack stack_
#define mp make_pair
#define fi first
#define se second
#define lowbit(x) ((x)&(-(x)))
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
typedef pair<int,int> pr;
const int maxn = 200020;
typedef vector <int> poly;
const int mod = 950009857;
//NOTES: 任意乘法需要用mul,或者强制用long long。
//注意取模
//====================================basic operation===============================
inline void add(int &x, int y) {
x += y;
if (x >= mod) {
x -= mod;
}
}
inline void sub(int &x, int y) {
x -= y;
if (x < 0) {
x += mod;
}
}
inline int mul(int x, int y) {
return (int) ((long long) x * y % mod);
}
inline int power(int x, int y) {
int res = 1;
while (y) {
if (y & 1) {
res = mul(res, x);
}
x = mul(x, x);
y >>= 1;
}
return res;
}
inline int inv(int a) {
int b = mod, u = 0, v = 1;
while (a) {
int t = b / a;
b -= t * a;
swap(a, b);
u -= t * v;
swap(u, v);
}
if (u < 0) {
u += mod;
}
return u;
}
//=======================================================================================
namespace ntt {
int base = 1, root = -1, max_base = -1;
poly rev = {0, 1}, roots = {0, 1};
void init() {
int temp = mod - 1;
max_base = 0;
while (temp % 2 == 0) {
temp >>= 1;
++max_base;
}
root = 2;
while (true) {
if (power(root, 1 << max_base) == 1 && power(root, 1 << (max_base - 1)) != 1) {
break;
}
++root;
}
}
void ensure_base(int nbase) { //所有dft需要的预处理
if (max_base == -1) {
init();
}
if (nbase <= base) {
return;
}
assert(nbase <= max_base);
rev.resize(1 << nbase);
for (int i = 0; i < 1 << nbase; ++i) { //预处理翻转位
rev[i] = rev[i >> 1] >> 1 | (i & 1) << (nbase - 1);
}
roots.resize(1 << nbase);
while (base < nbase) { //预处理单位根
int z = power(root, 1 << (max_base - 1 - base));
for (int i = 1 << (base - 1); i < 1 << base; ++i) {
roots[i << 1] = roots[i];
roots[i << 1 | 1] = mul(roots[i], z);
}
++base;
}
}
void dft(poly &a) {
int n = a.size(), zeros = __builtin_ctz(n);
ensure_base(zeros);
int shift = base - zeros;
for (int i = 0; i < n; ++i) {
if (i < rev[i] >> shift) {
swap(a[i], a[rev[i] >> shift]);
}
}
for (int i = 1; i < n; i <<= 1) {
for (int j = 0; j < n; j += i << 1) {
for (int k = 0; k < i; ++k) {
int x = a[j + k], y = mul(a[j + k + i], roots[i + k]);
a[j + k] = (x + y) % mod;
a[j + k + i] = (x + mod - y) % mod;
}
}
}
}
poly multiply(poly a, poly b) {
int need = a.size() + b.size() - 1, nbase = 0;
while (1 << nbase < need) {
++nbase;
}
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz);
b.resize(sz);
bool equal = a == b;
dft(a);
if (equal) {
b = a;
} else {
dft(b);
}
int inv_sz = inv(sz);
for (int i = 0; i < sz; ++i) {
a[i] = mul(mul(a[i], b[i]), inv_sz);
}
reverse(a.begin() + 1, a.end()); //相当于NTT(a,-1)
dft(a);
a.resize(need);
return a;
}
poly inverse(poly a) { //常数项不能为0,否则不存在逆元!
int n = a.size(), m = (n + 1) >> 1;
if (n == 1) {
return poly(1, inv(a[0]));
} else {
poly b = inverse(poly(a.begin(), a.begin() + m));
int need = n << 1, nbase = 0;
while (1 << nbase < need) {
++nbase;
}
ensure_base(nbase);
int sz = 1 << nbase;
a.resize(sz);
b.resize(sz);
dft(a);
dft(b);
int inv_sz = inv(sz);
for (int i = 0; i < sz; ++i) {
a[i] = mul(mul(mod + 2 - mul(a[i], b[i]), b[i]), inv_sz);
}
reverse(a.begin() + 1, a.end());
dft(a);
a.resize(n);
return a;
}
}
}
using ntt::multiply;
using ntt::inverse;
poly& operator += (poly &a, const poly &b) {
if (a.size() < b.size()) {
a.resize(b.size());
}
for (int i = 0; i < (int) b.size(); ++i) {
add(a[i], b[i]);
}
return a;
}
poly operator + (const poly &a, const poly &b) {
poly c = a;
return c += b;
}
poly& operator -= (poly &a, const poly &b) {
if (a.size() < b.size()) {
a.resize(b.size());
}
for (int i = 0; i < (int) b.size(); ++i) {
sub(a[i], b[i]);
}
return a;
}
poly operator - (const poly &a, const poly &b) {
poly c = a;
return c -= b;
}
poly& operator *= (poly &a, const poly &b) {
if ((int) min(a.size(), b.size()) < 128) {
poly c = a;
a.assign(a.size() + b.size() - 1, 0);
for (int i = 0; i < (int) c.size(); ++i) {
for (int j = 0; j < (int) b.size(); ++j) {
add(a[i + j], mul(c[i], b[j]));
}
}
} else {
a = multiply(a, b);
}
return a;
}
poly operator * (const poly &a, const poly &b) {
poly c = a;
return c *= b;
}
poly& operator /= (poly &a, const poly &b) {
int n = a.size(), m = b.size();
if (n < m) {
a.clear();
} else {
poly c = b;
reverse(a.begin(), a.end());
reverse(c.begin(), c.end());
c.resize(n - m + 1);
a *= inverse(c);
a.erase(a.begin() + n - m + 1, a.end());
reverse(a.begin(), a.end());
}
return a;
}
poly operator / (const poly &a, const poly &b) {
poly c = a;
return c /= b;
}
poly& operator %= (poly &a, const poly &b) {
int n = a.size(), m = b.size();
if (n >= m) {
poly c = (a / b) * b;
a.resize(m - 1);
for (int i = 0; i < m - 1; ++i) {
sub(a[i], c[i]);
}
}
return a;
}
poly operator % (const poly &a, const poly &b) {
poly c = a;
return c %= b;
}
poly derivative(const poly &a) {
int n = a.size();
poly b(n - 1);
for (int i = 1; i < n; ++i) {
b[i - 1] = mul(a[i], i);
}
return b;
}
poly primitive(const poly &a) {
int n = a.size();
poly b(n + 1), invs(n + 1);
for (int i = 1; i <= n; ++i) {
invs[i] = i == 1 ? 1 : mul(mod - mod / i, invs[mod % i]);
b[i] = mul(a[i - 1], invs[i]);
}
return b;
}
poly logarithm(const poly &a) {
poly b = primitive(derivative(a) * inverse(a));
b.resize(a.size());
return b;
}
poly exponent(const poly &a) {
poly b(1, 1);
while (b.size() < a.size()) {
poly c(a.begin(), a.begin() + min(a.size(), b.size() << 1));
add(c[0], 1);
poly old_b = b;
b.resize(b.size() << 1);
c -= logarithm(b);
c *= old_b;
for (int i = b.size() >> 1; i < (int) b.size(); ++i) {
b[i] = c[i];
}
}
b.resize(a.size());
return b;
}
poly power(const poly &a, int m) { //高端的power写法
int n = a.size(), p = -1;
poly b(n);
for (int i = 0; i < n; ++i) {
if (a[i]) {
p = i;
break;
}
}
if (p == -1) {
b[0] = !m;
return b;
}
if ((long long) m * p >= n) {
return b;
}
int mu = power(a[p], m), di = inv(a[p]);
poly c(n - m * p);
for (int i = 0; i < n - m * p; ++i) {
c[i] = mul(a[i + p], di);
}
c = logarithm(c);
for (int i = 0; i < n - m * p; ++i) {
c[i] = mul(c[i], m);
}
c = exponent(c);
for (int i = 0; i < n - m * p; ++i) {
b[i + m * p] = mul(c[i], mu);
}
return b;
}
poly sqrt(const poly &a) {
poly b(1,(int)sqrt(a[0])); //常数项是完全平方数,如果不是,则需要BSGS开根号
while (b.size() < a.size()) {
poly c(a.begin(), a.begin() + min(a.size(), b.size() << 1));
poly old_b = b;
b.resize(b.size() << 1);
c *= inverse(b);
for (int i = b.size() >> 1; i < (int) b.size(); ++i) {
b[i] = mul(c[i], (mod + 1) >> 1);
}
}
b.resize(a.size());
return b;
}
poly multiply_all(int l, int r, vector<poly > &all) {
if (l > r) {
return poly();
} else if (l == r) {
return all[l];
} else {
int y = (l + r) >> 1;
return multiply_all(l, y, all) * multiply_all(y + 1, r, all);
}
}
poly evaluate(const poly &f, const poly &x) {
int n = x.size();
if (!n) {
return poly();
}
vector<poly> up(n * 2);
for (int i = 0; i < n; ++i) {
up[i + n] = poly{(mod - x[i]) % mod, 1};
}
for (int i = n - 1; i; --i) {
up[i] = up[i << 1] * up[i << 1 | 1];
}
vector<poly> down(n * 2);
down[1] = f % up[1];
for (int i = 2; i < n * 2; ++i) {
down[i] = down[i >> 1] % up[i];
}
poly y(n);
for (int i = 0; i < n; ++i) {
y[i] = down[i + n][0];
}
return y;
}
poly interpolate(const poly &x, const poly &y) {
int n = x.size();
vector<poly> up(n * 2);
for (int i = 0; i < n; ++i) {
up[i + n] = poly{(mod - x[i]) % mod, 1};
}
for (int i = n - 1; i; --i) {
up[i] = up[i << 1] * up[i << 1 | 1];
}
poly a = evaluate(derivative(up[1]), x);
for (int i = 0; i < n; ++i) {
a[i] = mul(y[i], inv(a[i]));
}
vector<poly> down(n * 2);
for (int i = 0; i < n; ++i) {
down[i + n] = poly(1, a[i]);
}
for (int i = n - 1; i; --i) {
down[i] = down[i << 1] * up[i << 1 | 1] + down[i << 1 | 1] * up[i << 1];
}
return down[1];
}
cogs 2189
只有main函数的部分
int n,k;
poly f;
int main(){
freopen("polynomial.in","r",stdin);
freopen("polynomial.out","w",stdout);
// freopen("input.txt","r",stdin);
scanf("%d %d",&n,&k);
f.resize(n);
rep(i,0,n - 1) scanf("%d",&f[i]);
f = sqrt(f);
f = inverse(f);
f = primitive(f);
f = exponent(f);
f = inverse(f);
add(f[0],1);
f = logarithm(f);
add(f[0],1);
f = power(f,k);
f = derivative(f);
rep(i,0,n - 2) printf("%d ",f[i]);
puts("0");
}
最后
以上就是勤劳胡萝卜为你收集整理的【学习总结】生成函数题目,多项式模板的全部内容,希望文章能够帮你解决【学习总结】生成函数题目,多项式模板所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复