概述
题目描述
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点的左右两个子树的高度差的绝对值不超过1。
示例 1:
给定二叉树 [3,9,20,null,null,15,7]
3
/
9 20
/
15 7
返回 true
。
示例 2:
给定二叉树 [1,2,2,3,3,null,null,4,4]
1
/
2 2
/
3 3
/
4 4
返回 false
。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/balanced-binary-tree
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
我的思路
一棵二叉树平衡的条件:每个节点的左右两个子树的高度差的绝对值不超过1。
可以分三步:
- 当前树根结点的左右子树的高度差绝对值不超过1。
- 左子树平衡:以当前树根结点的左子结点为根结点的子树要平衡。
- 右子树平衡:以当前树根结点的右子结点为根结点的子树要平衡。
上面3步,有1步不满足,则这个二叉树不平衡;只有同时满足上面3个条件,二叉树才平衡。第2、3步判断左右子树的平衡和第1步方法相同。
计算树高度的方法:
一棵二叉树的高度 = 根结点的高度(即1)+ 左右子树高度的最大值
我的程序(Java)
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isBalanced(TreeNode root) {
if(root == null) return true; // 如果根结点为空,则一定平衡
// 左右子树的高度差的绝对值大于1,一定不平衡
if(Math.abs(height(root.left) - height(root.right)) > 1) return false;
if(!isBalanced(root.left)) return false; // 左子树不平衡
if(!isBalanced(root.right)) return false; // 右子树不平衡
return true;
}
public int height(TreeNode node){ // 计算以 node 为根结点的树的高度
if(node == null) return 0; // 结点为空时,高度为0
// 一棵二叉树的高度等于:根结点的高度(即1)+ 左右子树高度的最大值
return 1 + Math.max(height(node.left), height(node.right));
}
}
其他方法可参考Krahets。
如有不当之处,欢迎读者批评指正!
最后
以上就是高兴夏天为你收集整理的110. 平衡二叉树的全部内容,希望文章能够帮你解决110. 平衡二叉树所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复