概述
https://arxiv.org/pdf/2003.09152.pdf
提出类别正则化框架,主要使用多标签分类来进行实现前景物体的弱监督。
It is widely acknowledged that CNNs trained for singlelabel image classification tend to produce high responses on the local regions containing the main objects [38, 40, 39]. Analogously, CNNs trained for multi-label classification also have the weakly localization ability for the objects associated with image-level categories [35, 36].
并将图像级(Image Level)的多标签结果与实例级(Instance Level)的预测结果进行监督,挖掘目标域实例中的难样本(对实例赋予不同的损失权重)。
source code
target_weight = []
for i in range(len(tgt_pre_label)):
label_i = tgt_pre_label[i].item()
if label_i > 0:
diff_value = torch.exp(
weight_value
* torch.abs(tgt_image_cls_feat[label_i - 1] - tgt_prob[i][label_i])
).item()
target_weight.append(diff_value)
else:
target_weight.append(1.0)
tgt_instance_loss = nn.BCELoss(
weight=torch.Tensor(target_weight).view(-1, 1).cuda()
)
最后
以上就是高贵未来为你收集整理的论文简读《Exploring Categorical Regularization for Domain Adaptive Object Detection》的全部内容,希望文章能够帮你解决论文简读《Exploring Categorical Regularization for Domain Adaptive Object Detection》所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复