概述
1、读写图像
- imread (读):可以指定加载为灰度或者RGB图像
- Imwrite (写):保存图像文件,类型由扩展名决定
2、读写像素
- 读一个GRAY像素点的像素值(CV_8UC1)
Scalar intensity = img.at<uchar>(y, x);
或者 Scalar intensity = img.at<uchar>(Point(x, y));
这里补充一个快捷键:
快捷键:选中代码,然后按 alt+“上下键”,可以上下移动代码
单通道的代码实现:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src,gray_src;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg");
if (src.empty()) {
cout << "could not load image..." << endl;
return -1;
}
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
cvtColor(src, gray_src, COLOR_BGR2GRAY);
namedWindow("output", WINDOW_AUTOSIZE);
imshow("output", gray_src);
int height = gray_src.rows;
int width = gray_src.cols;
//快捷键:选中代码,然后按 alt+"上下键",可以上下移动代码
//单通道
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
}
imshow("gray invert", gray_src);
waitKey(0);
return 0;
}
运行结果如下:
- 读一个RGB像素点的像素值
Vec3f intensity = img.at<Vec3f>(y, x);
float blue = intensity.val[0];
float green = intensity.val[1];
float red = intensity.val[2];
多通道的代码实现:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src,gray_src;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg");
if (src.empty()) {
cout << "could not load image..." << endl;
return -1;
}
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
Mat dst;
dst.create(src.size(), src.type());
int height = src.rows;
int width = src.cols;
int nc = src.channels();
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (nc == 1)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
else if (nc == 3)
{
int b = src.at<Vec3b>(row, col)[0];
int g = src.at<Vec3b>(row, col)[1];
int r = src.at<Vec3b>(row, col)[2];
dst.at<Vec3b>(row, col)[0] = 255 - b;
dst.at<Vec3b>(row, col)[1] = 255 - g;
dst.at<Vec3b>(row, col)[2] = 255 - r;
}
}
}
imshow("gray invert", dst);
waitKey(0);
return 0;
}
运行结果如下:
若使用bitwise_not()函数效果相同
代码如下:
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main(int argc, char** argv) {
Mat src,gray_src;
src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg");
if (src.empty()) {
cout << "could not load image..." << endl;
return -1;
}
namedWindow("input", WINDOW_AUTOSIZE);
imshow("input", src);
Mat dst;
dst.create(src.size(), src.type());
int height = src.rows;
int width = src.cols;
int nc = src.channels();
/*
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (nc == 1)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
else if (nc == 3)
{
int b = src.at<Vec3b>(row, col)[0];
int c = src.at<Vec3b>(row, col)[1];
int d = src.at<Vec3b>(row, col)[2];
dst.at<Vec3b>(row, col)[0] = 255 - b;
dst.at<Vec3b>(row, col)[1] = 255 - c;
dst.at<Vec3b>(row, col)[2] = 255 - d;
}
}
}
*/
bitwise_not(src, dst);//三个通道的取反操作
imshow("gray invert", dst);
waitKey(0);
return 0;
}
上述代码运行结果与前面一致!
下面补充介绍一下几种函数:
- bitwise_and是对二进制数据进行“与”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0
- bitwise_or是对二进制数据进行“或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“或”操作,1|1=1,1|0=0,0|1=0,0|0=0
- bitwise_xor是对二进制数据进行“异或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“异或”操作,11=0,10=1,01=1,00=0
- bitwise_not是对二进制数据进行“非”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“非”操作,1=0,0=1
3、修改像素的值
- 灰度图像
img.at<uchar>(y, x) = 128;
- RGB三通道图像
img.at<Vec3b>(y,x)[0]=128; // blue
img.at<Vec3b>(y,x)[1]=128; // green
img.at<Vec3b>(y,x)[2]=128; // red
- 空白图像赋值
img = Scalar(0);
- ROI选择
Rect r(10, 10, 100, 100);
Mat smallImg = img(r);
4、Vec3b与Vec3F区别
- Vec3b对应三通道的顺序是blue、green、red的uchar类型数据。
- Vec3f对应三通道的float类型数据
- 把CV_8UC1转换到CV32F1实现如下:
src.convertTo(dst, CV_32F);
补充:
- 若不取反
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (nc == 1)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
else if (nc == 3)
{
int b = src.at<Vec3b>(row, col)[0];
int g = src.at<Vec3b>(row, col)[1];
int r = src.at<Vec3b>(row, col)[2];
dst.at<Vec3b>(row, col)[0] = b;
dst.at<Vec3b>(row, col)[1] = g;
dst.at<Vec3b>(row, col)[2] = 0;//改变这里
}
}
}
其运行结果为:
若代码改变成:
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (nc == 1)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
else if (nc == 3)
{
int b = src.at<Vec3b>(row, col)[0];
int g = src.at<Vec3b>(row, col)[1];
int r = src.at<Vec3b>(row, col)[2];
dst.at<Vec3b>(row, col)[0] = b;
dst.at<Vec3b>(row, col)[1] = 0;//这里改变
dst.at<Vec3b>(row, col)[2] = r;
}
}
}
其运行结果是:
若代码改变成;
for (int row = 0; row < height; row++)
{
for (int col = 0; col < width; col++)
{
if (nc == 1)
{
int gray = gray_src.at<uchar>(row, col);
gray_src.at<uchar>(row, col) = 255 - gray;
}
else if (nc == 3)
{
int b = src.at<Vec3b>(row, col)[0];
int g = src.at<Vec3b>(row, col)[1];
int r = src.at<Vec3b>(row, col)[2];
dst.at<Vec3b>(row, col)[0] = 0;//这里改变
dst.at<Vec3b>(row, col)[1] = g;
dst.at<Vec3b>(row, col)[2] = r;
}
}
}
其运行结果为:
也可以:
gray_src.at<uchar>(row, col) = max(r, max(b, g));//每个通道取最大值生成灰度图像等等
同理也可以最小值!
最后
以上就是清爽羊为你收集整理的OpenCV(C++)---图像操作补充:的全部内容,希望文章能够帮你解决OpenCV(C++)---图像操作补充:所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复