我是靠谱客的博主 清爽羊,这篇文章主要介绍OpenCV(C++)---图像操作补充:,现在分享给大家,希望可以做个参考。

1、读写图像

  • imread (读):可以指定加载为灰度或者RGB图像
  • Imwrite (写):保存图像文件,类型由扩展名决定

2、读写像素

  • 读一个GRAY像素点的像素值(CV_8UC1)
复制代码
1
2
3
Scalar intensity = img.at<uchar>(y, x); 或者 Scalar intensity = img.at<uchar>(Point(x, y));

这里补充一个快捷键:
快捷键:选中代码,然后按 alt+“上下键”,可以上下移动代码
单通道的代码实现:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; int main(int argc, char** argv) { Mat src,gray_src; src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg"); if (src.empty()) { cout << "could not load image..." << endl; return -1; } namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); cvtColor(src, gray_src, COLOR_BGR2GRAY); namedWindow("output", WINDOW_AUTOSIZE); imshow("output", gray_src); int height = gray_src.rows; int width = gray_src.cols; //快捷键:选中代码,然后按 alt+"上下键",可以上下移动代码 //单通道 for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } } imshow("gray invert", gray_src); waitKey(0); return 0; }

运行结果如下:在这里插入图片描述
在这里插入图片描述

  • 读一个RGB像素点的像素值
复制代码
1
2
3
4
5
6
Vec3f intensity = img.at<Vec3f>(y, x); float blue = intensity.val[0]; float green = intensity.val[1]; float red = intensity.val[2];

多通道的代码实现:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; int main(int argc, char** argv) { Mat src,gray_src; src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg"); if (src.empty()) { cout << "could not load image..." << endl; return -1; } namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); Mat dst; dst.create(src.size(), src.type()); int height = src.rows; int width = src.cols; int nc = src.channels(); for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (nc == 1) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } else if (nc == 3) { int b = src.at<Vec3b>(row, col)[0]; int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = 255 - b; dst.at<Vec3b>(row, col)[1] = 255 - g; dst.at<Vec3b>(row, col)[2] = 255 - r; } } } imshow("gray invert", dst); waitKey(0); return 0; }

运行结果如下:
在这里插入图片描述
若使用bitwise_not()函数效果相同
代码如下:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#include <opencv2/opencv.hpp> #include <iostream> using namespace std; using namespace cv; int main(int argc, char** argv) { Mat src,gray_src; src = imread("C:/Users/86180/Desktop/文档/学习/opencv/图片处理/zqy4.jpg"); if (src.empty()) { cout << "could not load image..." << endl; return -1; } namedWindow("input", WINDOW_AUTOSIZE); imshow("input", src); Mat dst; dst.create(src.size(), src.type()); int height = src.rows; int width = src.cols; int nc = src.channels(); /* for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (nc == 1) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } else if (nc == 3) { int b = src.at<Vec3b>(row, col)[0]; int c = src.at<Vec3b>(row, col)[1]; int d = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = 255 - b; dst.at<Vec3b>(row, col)[1] = 255 - c; dst.at<Vec3b>(row, col)[2] = 255 - d; } } } */ bitwise_not(src, dst);//三个通道的取反操作 imshow("gray invert", dst); waitKey(0); return 0; }

上述代码运行结果与前面一致!
下面补充介绍一下几种函数:

  • bitwise_and是对二进制数据进行“与”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“与”操作,1&1=1,1&0=0,0&1=0,0&0=0
  • bitwise_or是对二进制数据进行“或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“或”操作,1|1=1,1|0=0,0|1=0,0|0=0
  • bitwise_xor是对二进制数据进行“异或”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“异或”操作,11=0,10=1,01=1,00=0
  • bitwise_not是对二进制数据进行“非”操作,即对图像(灰度图像或彩色图像均可)每个像素值进行二进制“非”操作,1=0,0=1

3、修改像素的值

  • 灰度图像
复制代码
1
2
img.at<uchar>(y, x) = 128;
  • RGB三通道图像
复制代码
1
2
3
4
img.at<Vec3b>(y,x)[0]=128; // blue img.at<Vec3b>(y,x)[1]=128; // green img.at<Vec3b>(y,x)[2]=128; // red
  • 空白图像赋值
复制代码
1
2
img = Scalar(0);
  • ROI选择
复制代码
1
2
3
Rect r(10, 10, 100, 100); Mat smallImg = img(r);

4、Vec3b与Vec3F区别

  • Vec3b对应三通道的顺序是blue、green、red的uchar类型数据。
  • Vec3f对应三通道的float类型数据
  • 把CV_8UC1转换到CV32F1实现如下:
复制代码
1
2
src.convertTo(dst, CV_32F);

补充:

  • 若不取反
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (nc == 1) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } else if (nc == 3) { int b = src.at<Vec3b>(row, col)[0]; int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = b; dst.at<Vec3b>(row, col)[1] = g; dst.at<Vec3b>(row, col)[2] = 0;//改变这里 } } }

其运行结果为:
在这里插入图片描述
若代码改变成:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (nc == 1) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } else if (nc == 3) { int b = src.at<Vec3b>(row, col)[0]; int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = b; dst.at<Vec3b>(row, col)[1] = 0;//这里改变 dst.at<Vec3b>(row, col)[2] = r; } } }

其运行结果是:
在这里插入图片描述
若代码改变成;

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
for (int row = 0; row < height; row++) { for (int col = 0; col < width; col++) { if (nc == 1) { int gray = gray_src.at<uchar>(row, col); gray_src.at<uchar>(row, col) = 255 - gray; } else if (nc == 3) { int b = src.at<Vec3b>(row, col)[0]; int g = src.at<Vec3b>(row, col)[1]; int r = src.at<Vec3b>(row, col)[2]; dst.at<Vec3b>(row, col)[0] = 0;//这里改变 dst.at<Vec3b>(row, col)[1] = g; dst.at<Vec3b>(row, col)[2] = r; } } }

其运行结果为:
在这里插入图片描述
也可以:

复制代码
1
2
gray_src.at<uchar>(row, col) = max(r, max(b, g));//每个通道取最大值生成灰度图像等等

同理也可以最小值!

最后

以上就是清爽羊最近收集整理的关于OpenCV(C++)---图像操作补充:的全部内容,更多相关OpenCV(C++)---图像操作补充内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(50)

评论列表共有 0 条评论

立即
投稿
返回
顶部