我是靠谱客的博主 深情大门,最近开发中收集的这篇文章主要介绍【TensorFlow系列】【三】冻结模型文件并做inference,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

2019独角兽企业重金招聘Python工程师标准>>> hot3.png

本文基于mnist与lenet,讲述如下两个问题:

1.如何将训练好的网络模型冻结,形成net.pb文件?

2.如何将net.pb文件部署到TensorFlow中做inference?

pb文件保存的步骤
1.需要给input与最终的预测值取个名字,便于部署时输入数据并输出数据
2.利用graph_util.convert_variables_to_constants将网络中模型参数变量转换为常量
3.利用tf.gfile.FastGFile将模型参数序列化后的数据写入文件。

pb文件部署步骤:
1.利用tf.gfile.FastGFile读取pb文件,并将文件中存储的graph导入到TensorFlow中。
2.从graph中获取input与output变量,传入图片数据,做inference

 

【基于mnist与lenet,保存pb文件】

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from tensorflow.python.framework import graph_util

mnist = input_data.read_data_sets(train_dir=r"E:mnist_data",one_hot=True)


#定义输入数据mnist图片大小28*28*1=784,None表示batch_size
x = tf.placeholder(dtype=tf.float32,shape=[None,28*28],name="input")
#定义标签数据,mnist共10类
y_ = tf.placeholder(dtype=tf.float32,shape=[None,10],name="y_")
#将数据调整为二维数据,w*H*c---> 28*28*1,-1表示N张
image = tf.reshape(x,shape=[-1,28,28,1])

#第一层,卷积核={5*5*1*32},池化核={2*2*1,1*2*2*1}
w1 = tf.Variable(initial_value=tf.random_normal(shape=[5,5,1,32],stddev=0.1,dtype=tf.float32,name="w1"))
b1= tf.Variable(initial_value=tf.zeros(shape=[32]))
conv1 = tf.nn.conv2d(input=image,filter=w1,strides=[1,1,1,1],padding="SAME",name="conv1")
relu1 = tf.nn.relu(tf.nn.bias_add(conv1,b1),name="relu1")
pool1 = tf.nn.max_pool(value=relu1,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
#shape={None,14,14,32}
#第二层,卷积核={5*5*32*64},池化核={2*2*1,1*2*2*1}
w2 = tf.Variable(initial_value=tf.random_normal(shape=[5,5,32,64],stddev=0.1,dtype=tf.float32,name="w2"))
b2 = tf.Variable(initial_value=tf.zeros(shape=[64]))
conv2 = tf.nn.conv2d(input=pool1,filter=w2,strides=[1,1,1,1],padding="SAME")
relu2 = tf.nn.relu(tf.nn.bias_add(conv2,b2),name="relu2")
pool2 = tf.nn.max_pool(value=relu2,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME",name="pool2")
#shape={None,7,7,64}
#FC1
w3 = tf.Variable(initial_value=tf.random_normal(shape=[7*7*64,1024],stddev=0.1,dtype=tf.float32,name="w3"))
b3 = tf.Variable(initial_value=tf.zeros(shape=[1024]))
#关键,进行reshape
input3 = tf.reshape(pool2,shape=[-1,7*7*64],name="input3")
fc1 = tf.nn.relu(tf.nn.bias_add(value=tf.matmul(input3,w3),bias=b3),name="fc1")
#shape={None,1024}
#FC2
w4 = tf.Variable(initial_value=tf.random_normal(shape=[1024,10],stddev=0.1,dtype=tf.float32,name="w4"))
b4 = tf.Variable(initial_value=tf.zeros(shape=[10]))
fc2 = tf.nn.bias_add(value=tf.matmul(fc1,w4),bias=b4)
#shape={None,10}
#定义交叉熵损失
# 使用softmax将NN计算输出值表示为概率
y = tf.nn.softmax(fc2,name="out")

# 定义交叉熵损失函数
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=fc2,labels=y_)
loss = tf.reduce_mean(cross_entropy)
#定义solver
train = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(loss=loss)

#定义正确值,判断二者下标index是否相等
correct_predict = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#定义如何计算准确率
accuracy = tf.reduce_mean(tf.cast(correct_predict,dtype=tf.float32),name="accuracy")
#定义初始化op
init = tf.global_variables_initializer()

#训练NN
with tf.Session() as session:
    session.run(fetches=init)
    for i in range(0,1000):
        xs, ys = mnist.train.next_batch(100)
        session.run(fetches=train,feed_dict={x:xs,y_:ys})
        if i%100 == 0:
            train_accuracy = session.run(fetches=accuracy,feed_dict={x:xs,y_:ys})
            print(i,"accuracy=",train_accuracy)
    #训练完成后,将网络中的权值转化为常量,形成常量graph
    constant_graph = graph_util.convert_variables_to_constants(sess=session,
                                                            input_graph_def=session.graph_def,
                                                            output_node_names=['out'])
    #将带权值的graph序列化,写成pb文件存储起来
    with tf.gfile.FastGFile("lenet.pb", mode='wb') as f:
        f.write(constant_graph.SerializeToString())

【将pb文件部署到TensorFlow中并做inference】

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import numpy as np

mnist = input_data.read_data_sets(train_dir=r"E:mnist_data",one_hot=True)
pb_path = r"lenet.pb"
#导入pb文件到graph中
with tf.gfile.FastGFile(pb_path,'rb') as f:
    # 复制定义好的计算图到新的图中,先创建一个空的图.
    graph_def = tf.GraphDef()
    # 加载proto-buf中的模型
    graph_def.ParseFromString(f.read())
    # 最后复制pre-def图的到默认图中.
    _ = tf.import_graph_def(graph_def, name='')
with tf.Session() as session:
    #获取输入tensor
    input = tf.get_default_graph().get_tensor_by_name("input:0")
    #获取预测tensor
    output = tf.get_default_graph().get_tensor_by_name("out:0")
    #取第100张图片测试
    one_image = np.reshape(mnist.test.images[100], [-1, 784])
    #将测试图片传入nn中,做inference
    out = session.run(output,feed_dict={input:one_image})
    pre_label = np.argmax(out,1)
    print("pre_label=",pre_label)
    print('true label:', np.argmax(mnist.test.labels[100],0))

测试结果如下图:

144014_NVvM_3800567.png

 

转载于:https://my.oschina.net/u/3800567/blog/1637829

最后

以上就是深情大门为你收集整理的【TensorFlow系列】【三】冻结模型文件并做inference的全部内容,希望文章能够帮你解决【TensorFlow系列】【三】冻结模型文件并做inference所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(61)

评论列表共有 0 条评论

立即
投稿
返回
顶部