概述
GCD
Problem Description
Give you a sequence of
N(N≤100,000)
integers :
a1,...,an(0<ai≤1000,000,000)
. There are
Q(Q≤100,000)
queries. For each query
l,r
you have to calculate
gcd(al,,al+1,...,ar)
and count the number of pairs
(l′,r′)(1≤l<r≤N)
such that
gcd(al′,al′+1,...,ar′)
equal
gcd(al,al+1,...,ar)
.
Input
The first line of input contains a number
T
, which stands for the number of test cases you need to solve.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
The first line of each case contains a number N , denoting the number of integers.
The second line contains N integers, a1,...,an(0<ai≤1000,000,000) .
The third line contains a number Q , denoting the number of queries.
For the next Q lines, i-th line contains two number , stand for the li,ri , stand for the i-th queries.
Output
For each case, you need to output “Case #:t” at the beginning.(with quotes,
t
means the number of the test case, begin from 1).
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
For each query, you need to output the two numbers in a line. The first number stands for gcd(al,al+1,...,ar) and the second number stands for the number of pairs (l′,r′) such that gcd(al′,al′+1,...,ar′) equal gcd(al,al+1,...,ar) .
Sample Input
1 5 1 2 4 6 7 4 1 5 2 4 3 4 4 4
Sample Output
Case #1: 1 8 2 4 2 4 6 1 题意:给出一个数列 ,m次询问,每次询问 l,r区间内的gcd值 和 与该区间gcd值相同的区间有多少个 分析: 枚举每一个左端点,找每个左端点对应的所有gcd值区间,预处理出来,由于gcd值呈阶梯下降,所以完全可以处理,此时顺便用map统计区间个数 一开始考虑的是用线段树取gcd值,在加上二分处理,但是发现这样做其实复杂度达到了 n*logn*logn*logn ,直接T掉,然后想到用RMQ O(1)去处理gcd值,降下一个logn成功AC#include<cstring> #include<string> #include<iostream> #include<queue> #include<cstdio> #include<algorithm> #include<map> #include<cstdlib> #include<cmath> #include<vector> //#pragma comment(linker, "/STACK:1024000000,1024000000"); using namespace std; #define INF 0x3f3f3f3f int n; int a[100005]; int dp[100006][30]; int mm[100005]; void initRMQ(int n,int b[]) { mm[0]=-1; for(int i=1;i<=n;i++) { mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1]; dp[i][0]=b[i]; } for(int j=1;j<=mm[n];j++) for(int i=1;i+(1<<j)-1<=n;i++) dp[i][j]=__gcd(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int rmq(int x,int y) { int k=mm[y-x+1]; return __gcd(dp[x][k],dp[y-(1<<k)+1][k]); } int Fr(int gcd,int i) { int l=i,r=n; while(l+1<=r) { int mid=l+r>>1; int g=rmq(i,mid); if(__gcd(g,gcd)>=gcd) l=mid+1; else r=mid-1; } if(__gcd(gcd,rmq(i,l))!=gcd) l--; return l; } int main() { memset(a,1,sizeof a); int T; int ca=1; scanf("%d",&T); while(T--) { scanf("%d",&n); for(int i=1; i<=n; i++) { scanf("%d",&a[i]); } initRMQ(n,a); map<int ,long long >mp; for(int i=1; i<=n; i++) { int gcd=a[i]; int pos=i; while(pos<=n) { int pos1=Fr(gcd,pos); mp[gcd]+=pos1-pos+1; pos=pos1+1; gcd=__gcd(gcd,a[pos]); } } int m; scanf("%d",&m); printf("Case #%d:n",ca++); while(m--) { int a,b; scanf("%d%d",&a,&b); int gcd=rmq(a,b); printf("%d %lldn",gcd,mp[gcd]); } } return 0; }
最后
以上就是要减肥宝马为你收集整理的HDU 5726 GCD(RMQ + 二分)GCD的全部内容,希望文章能够帮你解决HDU 5726 GCD(RMQ + 二分)GCD所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复