概述
You are given a sequence of n integers a1, a2, ..., an.
Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.
The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.
The poorness of a segment is defined as the absolute value of sum of the elements of segment.
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.
3 1 2 3
1.000000000000000
4 1 2 3 4
2.000000000000000
10 1 10 2 9 3 8 4 7 5 6
4.500000000000000
For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.
For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
解题思路: 所求的值在[-10000,10000]为下凹函数的性质,因此我们可以采用三分法求解。注意精度问题,一开始自己写的三分各种WA,后来改了个小地方过了。。。。。。
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn = 200010;
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3fLL;
double arr[maxn];
int n;
double cal(double x) {
double t1 = 0, t2 = 0, maxsum = -INF, minsum = INF;
for(int i = 1; i <= n; ++i) {
if(t1 >= 0) {
t1 += arr[i] - x;
} else {
t1 = arr[i] - x;
}
if(t2 <= 0) {
t2 += arr[i] - x;
} else {
t2 = arr[i] - x;
}
maxsum = max(maxsum, t1);
minsum = min(minsum, t2);
}
return max(abs(maxsum), abs(minsum));
}
int main() {
scanf("%d", &n);
for(int i = 1; i <= n; ++i) {
scanf("%lf", &arr[i]);
}
double l = -10005.0, r = 10005.0;
int lim = 100;
while(lim--) {
double ll = l + (r - l) / 3.0;
double rr = r - (r - l) / 3.0;
if(cal(ll) > cal(rr)) {
l = ll;
} else {
r = rr;
}
}
printf("%.9lfn", cal(l));
return 0;
}
最后
以上就是故意秋天为你收集整理的Codeforces 578C Weakness and Poorness的全部内容,希望文章能够帮你解决Codeforces 578C Weakness and Poorness所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复