概述
http://www.yyycode.cn/index.php/2020/05/17/c-product-of-three-numbers%e7%ad%89%e5%bc%8f%e6%9e%9a%e4%b8%be%e4%bc%98%e5%8c%96/
You are given one integer number nn. Find three distinct integers a,b,ca,b,c such that 2≤a,b,c2≤a,b,c and a⋅b⋅c=na⋅b⋅c=n or say that it is impossible to do it.
If there are several answers, you can print any.
You have to answer tt independent test cases.Input
The first line of the input contains one integer tt (1≤t≤1001≤t≤100) — the number of test cases.
The next nn lines describe test cases. The ii-th test case is given on a new line as one integer nn (2≤n≤1092≤n≤109).Output
For each test case, print the answer on it. Print “NO” if it is impossible to represent nn as a⋅b⋅ca⋅b⋅c for some distinct integers a,b,ca,b,c such that 2≤a,b,c2≤a,b,c.
Otherwise, print “YES” and any possible such representation.ExampleinputCopy
5 64 32 97 2 12345
outputCopy
YES 2 4 8 NO NO NO YES 3 5 823
题意:给你一个n,让你找2<=a<=b<=c,使得n=a*b*c,判断有无,有就输出,没有就NO。
思路:刚开始想有一个地方想错了,想成了有一个数是构造的。
正确思路: a*b*c==n,如果直接枚举,是O(n^3)的,必然是超时的。
我们把b*c先看成一个整体t那么a*t==n,用枚举质因子的 / i 的log(n)做法,先看看a能否求出,不能求出就no
如果a求出,那么n/a=b*c,令n=n/a按照同样的办法,枚举b,b从a+1开始枚举,保证不同,然后log(n)取算出整除的b,直接O(1)得c
最后判下b会不会等于c即可
#include<iostream>
#include<vector>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=1e5;
typedef long long LL;
int main(void)
{
LL t;cin>>t;
while(t--)
{
LL n;cin>>n;
LL a=-1;LL b=-1;LL c=-1;
for(LL i=2;i<=n/i;i++)
{
if(n%i==0)
{
a=i;break;
}
}
if(a==-1) { cout<<"NO"<<endl;continue;}
else if(a!=-1)
{
n/=a;
for(LL i=a+1;i<=n/i;i++)
if( n%i==0)
{
b=i;c=n/i; break;
}
}
if(b==-1) {cout<<"NO"<<endl;continue;}
else if(b==c) cout<<"NO"<<endl;
else cout<<"YES"<<endl<<a<<' '<<b<<' '<<c<<endl;
}
return 0;
}
最后
以上就是聪慧摩托为你收集整理的C. PRODUCT OF THREE NUMBERS[等式枚举优化]的全部内容,希望文章能够帮你解决C. PRODUCT OF THREE NUMBERS[等式枚举优化]所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复