概述
You are given an array consisting of n non-negative integers a1, a2, ..., an.
You are going to destroy integers in the array one by one. Thus, you are given the permutation of integers from 1 to n defining the order elements of the array are destroyed.
After each element is destroyed you have to find out the segment of the array, such that it contains no destroyed elements and the sum of its elements is maximum possible. The sum of elements in the empty segment is considered to be 0.
The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the length of the array.
The second line contains n integers a1, a2, ..., an (0 ≤ ai ≤ 109).
The third line contains a permutation of integers from 1 to n — the order used to destroy elements.
Print n lines. The i-th line should contain a single integer — the maximum possible sum of elements on the segment containing no destroyed elements, after first i operations are performed.
4
1 3 2 5
3 4 1 2
5
4
3
0
5
1 2 3 4 5
4 2 3 5 1
6
5
5
1
0
8
5 5 4 4 6 6 5 5
5 2 8 7 1 3 4 6
18
16
11
8
8
6
6
0
const int eps = 1e5+5;
const int maxn = 0x3f3f3f3f;
#define ll long long
#define lson k<<1
#define rson k<<1|1
ll n;
struct node
{
ll l, r;
ll lm, rm, sm;
ll lf, rf;
}t[eps<<2];
void pushup(ll k){
t[k].lm = t[lson].lm;
t[k].rm = t[rson].rm;
t[k].sm = max(t[lson].sm, t[rson].sm);
t[k].lf = t[lson].lf;
t[k].rf = t[rson].rf;
if (t[lson].lf == (t[lson].r - t[lson].l + 1) && t[rson].lf != -1 ) {
t[k].lm += t[rson].lm;
t[k].lf += t[rson].lf;
}
if (t[rson].rf == (t[rson].r - t[rson].l + 1) && t[lson].rf != -1 ) {
t[k].rm += t[lson].rm;
t[k].rf += t[lson].rf;
}
if (t[lson].rf != -1 && t[rson].lf != -1)
t[k].sm = max(t[k].sm, t[lson].rm + t[rson].lm);
}
void build(ll l, ll r, ll k){
t[k].l = l;
t[k].r = r;
t[k].lf = t[k].rf = r-l+1;
ll x;
if (l == r){
scanf("%lld", &x);
t[k].lm = t[k].rm = t[k].sm = x;
return;
}
ll m = (l + r) >> 1;
build(l, m, lson);
build(m+1, r, rson);
pushup(k);
}
void update(ll x, ll k){
if (t[k].l == t[k].r){
t[k].lf = t[k].rf = -1;
t[k].lm = t[k].rm = t[k].sm = 0;
return;
}
ll m = (t[k].l + t[k].r) >> 1;
if (x <= m) update(x, lson);
if (x > m) update(x, rson);
pushup(k);
}
int main() {
ll x;
scanf("%lld", &n);
build(1, n, 1);
for(ll i = 1; i <= n; i++){
scanf("%lld", &x);
update(x, 1);
printf("%lldn", t[1].sm);
}
return 0;
}
并查集 :
const int eps = 1e5+5;
#define ll long long
ll a[eps], b[eps], c[eps];
ll f[eps];
ll s[eps];
ll n;
stack<ll>sta;
ll find(ll x){
return x==f[x]?x:find(f[x]);
}
int main() {
cin >> n;
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
for(int i = 1; i <= n; i++) scanf("%lld", &b[i]);
memset(c, -1, sizeof(c));
memset(f, -1, sizeof(f));
ll ans = 0;
c[b[n]] = a[b[n]];
f[b[n]] = b[n];
s[b[n]] = a[b[n]];
sta.push(ans);
ans += c[b[n]];
for(ll i = n-1; i >= 1; i--){
c[b[i]] = a[b[i]];
f[b[i]] = b[i];
s[b[i]] = a[b[i]];
sta.push(ans);
if (c[b[i]-1] != -1){
ll fx = find(b[i]-1);
f[b[i]] = fx;
s[fx] += a[b[i]];
ans = max(ans, s[fx]);
}
if (c[b[i]+1] != -1){
ll f1 = find(b[i]+1);
ll f2 = find(b[i]);
f[f1] = f2;
s[f2] += s[f1];
ans = max(ans, s[f2]);
}
ans = max(ans, s[b[i]]);
}
while(!sta.empty()) {
printf("%lldn", sta.top());
sta.pop();
}
return 0;
}
转载于:https://www.cnblogs.com/ccut-ry/p/8351387.html
最后
以上就是单薄钻石为你收集整理的线段树 - 区间合并的全部内容,希望文章能够帮你解决线段树 - 区间合并所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复