我是靠谱客的博主 疯狂心锁,这篇文章主要介绍robot_localization 源码解析(1)ekf_localization_node,现在分享给大家,希望可以做个参考。

robot_localization 源码解析(1)ekf_localization_node

    • 1. 简介
      • 1.1 坐标系定义
    • 2. 实例化RosEkf
    • 2. 初始化RosEkf
      • 2.1 loadParams()加载参数
      • 2.2 periodicUpdate() 循环处理函数
        • 2.2.1 Ekf::predict()
        • 2.2.2 Ekf::correct()

1. 简介

1.1 坐标系定义

状态向量为:
X = ( x , y , z , θ x , θ y , θ z , x ˙ , y ˙ , z ˙ , θ x ˙ , θ y ˙ , θ z ˙ , x ¨ , y ¨ , z ¨ ) T X = (x,y,z,theta_x,theta_y,theta_z,dot{x},dot{y},dot{z},dot{theta_x},dot{theta_y},dot{theta_z},ddot{x},ddot{y},ddot{z})^T X=x,y,z,θx,θy,θz,x˙,y˙,z˙,θx˙,θy˙,θz˙,x¨,y¨,z¨)T
状态向量中 ( x , y , z , θ x , θ y , θ z ) (x,y,z,theta_x,theta_y,theta_z) x,y,z,θx,θy,θz)为世界坐标系下的绝对姿态, ( x ˙ , y ˙ , z ˙ , θ x ˙ , θ y ˙ , θ z ˙ , x ¨ , y ¨ , z ¨ ) (dot{x},dot{y},dot{z},dot{theta_x},dot{theta_y},dot{theta_z},ddot{x},ddot{y},ddot{z}) x˙,y˙,z˙,θx˙,θy˙,θz˙,x¨,y¨,z¨)为载体坐标系下的姿态变化;

ekf_localization_node 对应的文件为ekf_localization_node.cpp,其以Ekf为参数实例化了模板类 RosFilter:

复制代码
1
2
3
4
5
6
7
8
namespace RobotLocalization { typedef RosFilter<Ekf> RosEkf;//以Ekf为参数实例化了模板类 RosFilter typedef RosFilter<Ukf> RosUkf; }

ekf_localization_node.cpp代码内容如下,主要分为实例化RosEkf和初始化RosEkf两个部分,下面将分为这两个部分进行展开:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
int main(int argc, char **argv) { ros::init(argc, argv, "ekf_navigation_node"); ros::NodeHandle nh; ros::NodeHandle nh_priv("~"); RobotLocalization::RosEkf ekf(nh, nh_priv);//实例化RosEkf ekf.initialize();//初始化RosEkf ros::spin(); return EXIT_SUCCESS; }

2. 实例化RosEkf

实例化RosEkf通过构造函数完成,构造函数进行普通成员变量初始化,以及状态向量名初始化:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
template<typename T> RosFilter<T>::RosFilter(ros::NodeHandle nh, ros::NodeHandle nh_priv, std::string node_name, std::vector<double> args) : disabledAtStartup_(false), enabled_(false), predictToCurrentTime_(false), printDiagnostics_(true), publishAcceleration_(false), publishTransform_(true), resetOnTimeJump_(false), smoothLaggedData_(false), toggledOn_(true), twoDMode_(false), useControl_(false), silentTfFailure_(false), dynamicDiagErrorLevel_(diagnostic_msgs::DiagnosticStatus::OK), staticDiagErrorLevel_(diagnostic_msgs::DiagnosticStatus::OK), frequency_(30.0), gravitationalAcc_(9.80665), historyLength_(0), minFrequency_(frequency_ - 2.0), maxFrequency_(frequency_ + 2.0), baseLinkFrameId_("base_link"), mapFrameId_("map"), odomFrameId_("odom"), worldFrameId_(odomFrameId_), lastDiagTime_(0), lastSetPoseTime_(0), latestControlTime_(0), tfTimeOffset_(ros::Duration(0)), tfTimeout_(ros::Duration(0)), filter_(args), nh_(nh), nhLocal_(nh_priv), diagnosticUpdater_(nh, nh_priv, node_name), tfListener_(tfBuffer_) { stateVariableNames_.push_back("X");//状态向量 stateVariableNames_.push_back("Y"); stateVariableNames_.push_back("Z"); stateVariableNames_.push_back("ROLL"); stateVariableNames_.push_back("PITCH"); stateVariableNames_.push_back("YAW"); stateVariableNames_.push_back("X_VELOCITY"); stateVariableNames_.push_back("Y_VELOCITY"); stateVariableNames_.push_back("Z_VELOCITY"); stateVariableNames_.push_back("ROLL_VELOCITY"); stateVariableNames_.push_back("PITCH_VELOCITY"); stateVariableNames_.push_back("YAW_VELOCITY"); stateVariableNames_.push_back("X_ACCELERATION"); stateVariableNames_.push_back("Y_ACCELERATION"); stateVariableNames_.push_back("Z_ACCELERATION"); diagnosticUpdater_.setHardwareID("none"); }

2. 初始化RosEkf

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
template<typename T> void RosFilter<T>::initialize() { loadParams();//加载参数 if (printDiagnostics_) { diagnosticUpdater_.add("Filter diagnostic updater", this, &RosFilter<T>::aggregateDiagnostics); } // Set up the frequency diagnostic minFrequency_ = frequency_ - 2; maxFrequency_ = frequency_ + 2; freqDiag_ = std::make_unique<diagnostic_updater::HeaderlessTopicDiagnostic>( "odometry/filtered", diagnosticUpdater_, diagnostic_updater::FrequencyStatusParam( &minFrequency_, &maxFrequency_, 0.1, 10)); // Publisher positionPub_ = nh_.advertise<nav_msgs::Odometry>("odometry/filtered", 20); // Optional acceleration publisher if (publishAcceleration_) { accelPub_ = nh_.advertise<geometry_msgs::AccelWithCovarianceStamped>("accel/filtered", 20); } lastDiagTime_ = ros::Time::now(); periodicUpdateTimer_ = nh_.createTimer(ros::Duration(1./frequency_), &RosFilter<T>::periodicUpdate, this); }

2.1 loadParams()加载参数

订阅odom0: example/odom、odom1: example/another_odom等话题,并生成相关更新向量,观测以及观测协方差矩阵;
订阅pose0: example/pose等话题,并生成相关更新向量,观测以及观测协方差矩阵;
订阅imu0: example/imu等话题,并生成相关更新向量,观测以及观测协方差矩阵;
加载过程噪声
加载初始估计噪声

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
template<typename T> void RosFilter<T>::loadParams() { /* For diagnostic purposes, collect information about how many different * sources are measuring each absolute pose variable and do not have * differential integration enabled. */ std::map<StateMembers, int> absPoseVarCounts; absPoseVarCounts[StateMemberX] = 0; absPoseVarCounts[StateMemberY] = 0; absPoseVarCounts[StateMemberZ] = 0; absPoseVarCounts[StateMemberRoll] = 0; absPoseVarCounts[StateMemberPitch] = 0; absPoseVarCounts[StateMemberYaw] = 0; // Same for twist variables std::map<StateMembers, int> twistVarCounts; twistVarCounts[StateMemberVx] = 0; twistVarCounts[StateMemberVy] = 0; twistVarCounts[StateMemberVz] = 0; twistVarCounts[StateMemberVroll] = 0; twistVarCounts[StateMemberVpitch] = 0; twistVarCounts[StateMemberVyaw] = 0; // Determine if we'll be printing diagnostic information nhLocal_.param("print_diagnostics", printDiagnostics_, true); // Check for custom gravitational acceleration value nhLocal_.param("gravitational_acceleration", gravitationalAcc_, 9.80665); // Grab the debug param. If true, the node will produce a LOT of output. bool debug; nhLocal_.param("debug", debug, false); if (debug) { std::string debugOutFile; try { nhLocal_.param("debug_out_file", debugOutFile, std::string("robot_localization_debug.txt")); debugStream_.open(debugOutFile.c_str()); // Make sure we succeeded if (debugStream_.is_open()) { filter_.setDebug(debug, &debugStream_); } else { ROS_WARN_STREAM("RosFilter::loadParams() - unable to create debug output file " << debugOutFile); } } catch(const std::exception &e) { ROS_WARN_STREAM("RosFilter::loadParams() - unable to create debug output file" << debugOutFile << ". Error was " << e.what() << "n"); } } // These params specify the name of the robot's body frame (typically // base_link) and odometry frame (typically odom) nhLocal_.param("map_frame", mapFrameId_, std::string("map")); nhLocal_.param("odom_frame", odomFrameId_, std::string("odom")); nhLocal_.param("base_link_frame", baseLinkFrameId_, std::string("base_link")); nhLocal_.param("base_link_frame_output", baseLinkOutputFrameId_, baseLinkFrameId_); /* * These parameters are designed to enforce compliance with REP-105: * http://www.ros.org/reps/rep-0105.html * When fusing absolute position data from sensors such as GPS, the state * estimate can undergo discrete jumps. According to REP-105, we want three * coordinate frames: map, odom, and base_link. The map frame can have * discontinuities, but is the frame with the most accurate position estimate * for the robot and should not suffer from drift. The odom frame drifts over * time, but is guaranteed to be continuous and is accurate enough for local * planning and navigation. The base_link frame is affixed to the robot. The * intention is that some odometry source broadcasts the odom->base_link * transform. The localization software should broadcast map->base_link. * However, tf does not allow multiple parents for a coordinate frame, so * we must *compute* map->base_link, but then use the existing odom->base_link * transform to compute *and broadcast* map->odom. * * The state estimation nodes in robot_localization therefore have two "modes." * If your world_frame parameter value matches the odom_frame parameter value, * then robot_localization will assume someone else is broadcasting a transform * from odom_frame->base_link_frame, and it will compute the * map_frame->odom_frame transform. Otherwise, it will simply compute the * odom_frame->base_link_frame transform. * * The default is the latter behavior (broadcast of odom->base_link). */ nhLocal_.param("world_frame", worldFrameId_, odomFrameId_); ROS_FATAL_COND(mapFrameId_ == odomFrameId_ || odomFrameId_ == baseLinkFrameId_ || mapFrameId_ == baseLinkFrameId_ || odomFrameId_ == baseLinkOutputFrameId_ || mapFrameId_ == baseLinkOutputFrameId_, "Invalid frame configuration! The values for map_frame, odom_frame, " "and base_link_frame must be unique. If using a base_link_frame_output values, it " "must not match the map_frame or odom_frame."); // Try to resolve tf_prefix std::string tfPrefix = ""; std::string tfPrefixPath = ""; if (nhLocal_.searchParam("tf_prefix", tfPrefixPath)) { nhLocal_.getParam(tfPrefixPath, tfPrefix); } // Append the tf prefix in a tf2-friendly manner FilterUtilities::appendPrefix(tfPrefix, mapFrameId_); FilterUtilities::appendPrefix(tfPrefix, odomFrameId_); FilterUtilities::appendPrefix(tfPrefix, baseLinkFrameId_); FilterUtilities::appendPrefix(tfPrefix, baseLinkOutputFrameId_); FilterUtilities::appendPrefix(tfPrefix, worldFrameId_); // Whether we're publshing the world_frame->base_link_frame transform nhLocal_.param("publish_tf", publishTransform_, true); // Whether we're publishing the acceleration state transform nhLocal_.param("publish_acceleration", publishAcceleration_, false); // Transform future dating double offsetTmp; nhLocal_.param("transform_time_offset", offsetTmp, 0.0); tfTimeOffset_.fromSec(offsetTmp); // Transform timeout double timeoutTmp; nhLocal_.param("transform_timeout", timeoutTmp, 0.0); tfTimeout_.fromSec(timeoutTmp); // Update frequency and sensor timeout double sensorTimeout; nhLocal_.param("frequency", frequency_, 30.0); nhLocal_.param("sensor_timeout", sensorTimeout, 1.0 / frequency_); filter_.setSensorTimeout(sensorTimeout); // Determine if we're in 2D mode nhLocal_.param("two_d_mode", twoDMode_, false); // Whether or not to print warning for tf lookup failure // Note: accesses the root of the parameter tree, not the local parameters nh_.param("/silent_tf_failure", silentTfFailure_, false); // Smoothing window size nhLocal_.param("smooth_lagged_data", smoothLaggedData_, false); nhLocal_.param("history_length", historyLength_, 0.0); // Wether we reset filter on jump back in time nhLocal_.param("reset_on_time_jump", resetOnTimeJump_, false); if (!smoothLaggedData_ && ::fabs(historyLength_) > 1e-9) { ROS_WARN_STREAM("Filter history interval of " << historyLength_ << " specified, but smooth_lagged_data is set to false. Lagged data will not be smoothed."); } if (smoothLaggedData_ && historyLength_ < -1e9) { ROS_WARN_STREAM("Negative history interval of " << historyLength_ << " specified. Absolute value will be assumed."); } historyLength_ = ::fabs(historyLength_); nhLocal_.param("predict_to_current_time", predictToCurrentTime_, false); // Determine if we're using a control term bool stampedControl = false; double controlTimeout = sensorTimeout; std::vector<int> controlUpdateVector(TWIST_SIZE, 0); std::vector<double> accelerationLimits(TWIST_SIZE, 1.0); std::vector<double> accelerationGains(TWIST_SIZE, 1.0); std::vector<double> decelerationLimits(TWIST_SIZE, 1.0); std::vector<double> decelerationGains(TWIST_SIZE, 1.0); nhLocal_.param("use_control", useControl_, false); nhLocal_.param("stamped_control", stampedControl, false); nhLocal_.param("control_timeout", controlTimeout, sensorTimeout); if (useControl_) { if (nhLocal_.getParam("control_config", controlUpdateVector)) { if (controlUpdateVector.size() != TWIST_SIZE) { ROS_ERROR_STREAM("Control configuration must be of size " << TWIST_SIZE << ". Provided config was of " "size " << controlUpdateVector.size() << ". No control term will be used."); useControl_ = false; } } else { ROS_ERROR_STREAM("use_control is set to true, but control_config is missing. No control term will be used."); useControl_ = false; } if (nhLocal_.getParam("acceleration_limits", accelerationLimits)) { if (accelerationLimits.size() != TWIST_SIZE) { ROS_ERROR_STREAM("Acceleration configuration must be of size " << TWIST_SIZE << ". Provided config was of " "size " << accelerationLimits.size() << ". No control term will be used."); useControl_ = false; } } else { ROS_WARN_STREAM("use_control is set to true, but acceleration_limits is missing. Will use default values."); } if (nhLocal_.getParam("acceleration_gains", accelerationGains)) { const int size = accelerationGains.size(); if (size != TWIST_SIZE) { ROS_ERROR_STREAM("Acceleration gain configuration must be of size " << TWIST_SIZE << ". Provided config was of size " << size << ". All gains will be assumed to be 1."); std::fill_n(accelerationGains.begin(), std::min(size, TWIST_SIZE), 1.0); accelerationGains.resize(TWIST_SIZE, 1.0); } } if (nhLocal_.getParam("deceleration_limits", decelerationLimits)) { if (decelerationLimits.size() != TWIST_SIZE) { ROS_ERROR_STREAM("Deceleration configuration must be of size " << TWIST_SIZE << ". Provided config was of size " << decelerationLimits.size() << ". No control term will be used."); useControl_ = false; } } else { ROS_INFO_STREAM("use_control is set to true, but no deceleration_limits specified. Will use acceleration " "limits."); decelerationLimits = accelerationLimits; } if (nhLocal_.getParam("deceleration_gains", decelerationGains)) { const int size = decelerationGains.size(); if (size != TWIST_SIZE) { ROS_ERROR_STREAM("Deceleration gain configuration must be of size " << TWIST_SIZE << ". Provided config was of size " << size << ". All gains will be assumed to be 1."); std::fill_n(decelerationGains.begin(), std::min(size, TWIST_SIZE), 1.0); decelerationGains.resize(TWIST_SIZE, 1.0); } } else { ROS_INFO_STREAM("use_control is set to true, but no deceleration_gains specified. Will use acceleration " "gains."); decelerationGains = accelerationGains; } } bool dynamicProcessNoiseCovariance = false; nhLocal_.param("dynamic_process_noise_covariance", dynamicProcessNoiseCovariance, false); filter_.setUseDynamicProcessNoiseCovariance(dynamicProcessNoiseCovariance); std::vector<double> initialState(STATE_SIZE, 0.0); if (nhLocal_.getParam("initial_state", initialState)) { if (initialState.size() != STATE_SIZE) { ROS_ERROR_STREAM("Initial state must be of size " << STATE_SIZE << ". Provided config was of size " << initialState.size() << ". The initial state will be ignored."); } else { Eigen::Map<Eigen::VectorXd> eigenState(initialState.data(), initialState.size()); filter_.setState(eigenState); } } // Check if the filter should start or not nhLocal_.param("disabled_at_startup", disabledAtStartup_, false); enabled_ = !disabledAtStartup_; // Debugging writes to file RF_DEBUG("tf_prefix is " << tfPrefix << "nmap_frame is " << mapFrameId_ << "nodom_frame is " << odomFrameId_ << "nbase_link_frame is " << baseLinkFrameId_ << "base_link_frame_output is " << baseLinkOutputFrameId_ << "nworld_frame is " << worldFrameId_ << "ntransform_time_offset is " << tfTimeOffset_.toSec() << "ntransform_timeout is " << tfTimeout_.toSec() << "nfrequency is " << frequency_ << "nsensor_timeout is " << filter_.getSensorTimeout() << "ntwo_d_mode is " << (twoDMode_ ? "true" : "false") << "nsilent_tf_failure is " << (silentTfFailure_ ? "true" : "false") << "nsmooth_lagged_data is " << (smoothLaggedData_ ? "true" : "false") << "nhistory_length is " << historyLength_ << "nuse_control is " << (useControl_ ? "true" : "false") << "nstamped_control is " << (stampedControl ? "true" : "false") << "ncontrol_config is " << controlUpdateVector << "ncontrol_timeout is " << controlTimeout << "nacceleration_limits are " << accelerationLimits << "nacceleration_gains are " << accelerationGains << "ndeceleration_limits are " << decelerationLimits << "ndeceleration_gains are " << decelerationGains << "ninitial state is " << filter_.getState() << "ndynamic_process_noise_covariance is " << (dynamicProcessNoiseCovariance ? "true" : "false") << "nprint_diagnostics is " << (printDiagnostics_ ? "true" : "false") << "n"); // Create a subscriber for manually setting/resetting pose setPoseSub_ = nh_.subscribe("set_pose", 1, &RosFilter<T>::setPoseCallback, this, ros::TransportHints().tcpNoDelay(false)); // Create a service for manually setting/resetting pose setPoseSrv_ = nh_.advertiseService("set_pose", &RosFilter<T>::setPoseSrvCallback, this); // Create a service for manually enabling the filter enableFilterSrv_ = nhLocal_.advertiseService("enable", &RosFilter<T>::enableFilterSrvCallback, this); // Create a service for toggling processing new measurements while still publishing toggleFilterProcessingSrv_ = nhLocal_.advertiseService("toggle", &RosFilter<T>::toggleFilterProcessingCallback, this); // Init the last measurement time so we don't get a huge initial delta filter_.setLastMeasurementTime(ros::Time::now().toSec()); //根据传感器数量加载传感器配置以及确定每个传感器的可更新分量配置, // Now pull in each topic to which we want to subscribe. // Start with odom. size_t topicInd = 0; bool moreParams = false; do { // Build the string in the form of "odomX", where X is the odom topic number, // then check if we have any parameters with that value. Users need to make // sure they don't have gaps in their configs (e.g., odom0 and then odom2) std::stringstream ss; ss << "odom" << topicInd++; std::string odomTopicName = ss.str(); moreParams = nhLocal_.hasParam(odomTopicName); if (moreParams) { // Determine if we want to integrate this sensor differentially bool differential; nhLocal_.param(odomTopicName + std::string("_differential"), differential, false); // Determine if we want to integrate this sensor relatively bool relative; nhLocal_.param(odomTopicName + std::string("_relative"), relative, false); if (relative && differential) { ROS_WARN_STREAM("Both " << odomTopicName << "_differential" << " and " << odomTopicName << "_relative were set to true. Using differential mode."); relative = false; } std::string odomTopic; nhLocal_.getParam(odomTopicName, odomTopic); // Check for pose rejection threshold double poseMahalanobisThresh; nhLocal_.param(odomTopicName + std::string("_pose_rejection_threshold"), poseMahalanobisThresh, std::numeric_limits<double>::max()); // Check for twist rejection threshold double twistMahalanobisThresh; nhLocal_.param(odomTopicName + std::string("_twist_rejection_threshold"), twistMahalanobisThresh, std::numeric_limits<double>::max()); // Now pull in its boolean update vector configuration. Create separate vectors for pose // and twist data, and then zero out the opposite values in each vector (no pose data in // the twist update vector and vice-versa). std::vector<int> updateVec = loadUpdateConfig(odomTopicName); std::vector<int> poseUpdateVec = updateVec; std::fill(poseUpdateVec.begin() + POSITION_V_OFFSET, poseUpdateVec.begin() + POSITION_V_OFFSET + TWIST_SIZE, 0); std::vector<int> twistUpdateVec = updateVec; std::fill(twistUpdateVec.begin() + POSITION_OFFSET, twistUpdateVec.begin() + POSITION_OFFSET + POSE_SIZE, 0); int poseUpdateSum = std::accumulate(poseUpdateVec.begin(), poseUpdateVec.end(), 0); int twistUpdateSum = std::accumulate(twistUpdateVec.begin(), twistUpdateVec.end(), 0); int odomQueueSize = 1; nhLocal_.param(odomTopicName + "_queue_size", odomQueueSize, 1); const CallbackData poseCallbackData(odomTopicName + "_pose", poseUpdateVec, poseUpdateSum, differential, relative, poseMahalanobisThresh); const CallbackData twistCallbackData(odomTopicName + "_twist", twistUpdateVec, twistUpdateSum, false, false, twistMahalanobisThresh); bool nodelayOdom = false; nhLocal_.param(odomTopicName + "_nodelay", nodelayOdom, false); // Store the odometry topic subscribers so they don't go out of scope. if (poseUpdateSum + twistUpdateSum > 0) { topicSubs_.push_back( nh_.subscribe<nav_msgs::Odometry>(odomTopic, odomQueueSize, boost::bind(&RosFilter::odometryCallback, this, _1, odomTopicName, poseCallbackData, twistCallbackData), ros::VoidPtr(), ros::TransportHints().tcpNoDelay(nodelayOdom))); } else { std::stringstream stream; stream << odomTopic << " is listed as an input topic, but all update variables are false"; addDiagnostic(diagnostic_msgs::DiagnosticStatus::WARN, odomTopic + "_configuration", stream.str(), true); } if (poseUpdateSum > 0) { if (differential) { twistVarCounts[StateMemberVx] += poseUpdateVec[StateMemberX]; twistVarCounts[StateMemberVy] += poseUpdateVec[StateMemberY]; twistVarCounts[StateMemberVz] += poseUpdateVec[StateMemberZ]; twistVarCounts[StateMemberVroll] += poseUpdateVec[StateMemberRoll]; twistVarCounts[StateMemberVpitch] += poseUpdateVec[StateMemberPitch]; twistVarCounts[StateMemberVyaw] += poseUpdateVec[StateMemberYaw]; } else { absPoseVarCounts[StateMemberX] += poseUpdateVec[StateMemberX]; absPoseVarCounts[StateMemberY] += poseUpdateVec[StateMemberY]; absPoseVarCounts[StateMemberZ] += poseUpdateVec[StateMemberZ]; absPoseVarCounts[StateMemberRoll] += poseUpdateVec[StateMemberRoll]; absPoseVarCounts[StateMemberPitch] += poseUpdateVec[StateMemberPitch]; absPoseVarCounts[StateMemberYaw] += poseUpdateVec[StateMemberYaw]; } } if (twistUpdateSum > 0) { twistVarCounts[StateMemberVx] += twistUpdateVec[StateMemberVx]; twistVarCounts[StateMemberVy] += twistUpdateVec[StateMemberVx]; twistVarCounts[StateMemberVz] += twistUpdateVec[StateMemberVz]; twistVarCounts[StateMemberVroll] += twistUpdateVec[StateMemberVroll]; twistVarCounts[StateMemberVpitch] += twistUpdateVec[StateMemberVpitch]; twistVarCounts[StateMemberVyaw] += twistUpdateVec[StateMemberVyaw]; } RF_DEBUG("Subscribed to " << odomTopic << " (" << odomTopicName << ")nt" << odomTopicName << "_differential is " << (differential ? "true" : "false") << "nt" << odomTopicName << "_pose_rejection_threshold is " << poseMahalanobisThresh << "nt" << odomTopicName << "_twist_rejection_threshold is " << twistMahalanobisThresh << "nt" << odomTopicName << "_queue_size is " << odomQueueSize << "nt" << odomTopicName << " pose update vector is " << poseUpdateVec << "t"<< odomTopicName << " twist update vector is " << twistUpdateVec); } } while (moreParams); // Repeat for pose topicInd = 0; moreParams = false; do { std::stringstream ss; ss << "pose" << topicInd++; std::string poseTopicName = ss.str(); moreParams = nhLocal_.hasParam(poseTopicName); if (moreParams) { bool differential; nhLocal_.param(poseTopicName + std::string("_differential"), differential, false); // Determine if we want to integrate this sensor relatively bool relative; nhLocal_.param(poseTopicName + std::string("_relative"), relative, false); if (relative && differential) { ROS_WARN_STREAM("Both " << poseTopicName << "_differential" << " and " << poseTopicName << "_relative were set to true. Using differential mode."); relative = false; } std::string poseTopic; nhLocal_.getParam(poseTopicName, poseTopic); // Check for pose rejection threshold double poseMahalanobisThresh; nhLocal_.param(poseTopicName + std::string("_rejection_threshold"), poseMahalanobisThresh, std::numeric_limits<double>::max()); int poseQueueSize = 1; nhLocal_.param(poseTopicName + "_queue_size", poseQueueSize, 1); bool nodelayPose = false; nhLocal_.param(poseTopicName + "_nodelay", nodelayPose, false); // Pull in the sensor's config, zero out values that are invalid for the pose type std::vector<int> poseUpdateVec = loadUpdateConfig(poseTopicName); std::fill(poseUpdateVec.begin() + POSITION_V_OFFSET, poseUpdateVec.begin() + POSITION_V_OFFSET + TWIST_SIZE, 0); std::fill(poseUpdateVec.begin() + POSITION_A_OFFSET, poseUpdateVec.begin() + POSITION_A_OFFSET + ACCELERATION_SIZE, 0); int poseUpdateSum = std::accumulate(poseUpdateVec.begin(), poseUpdateVec.end(), 0); if (poseUpdateSum > 0) { const CallbackData callbackData(poseTopicName, poseUpdateVec, poseUpdateSum, differential, relative, poseMahalanobisThresh); topicSubs_.push_back( nh_.subscribe<geometry_msgs::PoseWithCovarianceStamped>(poseTopic, poseQueueSize, boost::bind(&RosFilter::poseCallback, this, _1, callbackData, worldFrameId_, false), ros::VoidPtr(), ros::TransportHints().tcpNoDelay(nodelayPose))); if (differential) { twistVarCounts[StateMemberVx] += poseUpdateVec[StateMemberX]; twistVarCounts[StateMemberVy] += poseUpdateVec[StateMemberY]; twistVarCounts[StateMemberVz] += poseUpdateVec[StateMemberZ]; twistVarCounts[StateMemberVroll] += poseUpdateVec[StateMemberRoll]; twistVarCounts[StateMemberVpitch] += poseUpdateVec[StateMemberPitch]; twistVarCounts[StateMemberVyaw] += poseUpdateVec[StateMemberYaw]; } else { absPoseVarCounts[StateMemberX] += poseUpdateVec[StateMemberX]; absPoseVarCounts[StateMemberY] += poseUpdateVec[StateMemberY]; absPoseVarCounts[StateMemberZ] += poseUpdateVec[StateMemberZ]; absPoseVarCounts[StateMemberRoll] += poseUpdateVec[StateMemberRoll]; absPoseVarCounts[StateMemberPitch] += poseUpdateVec[StateMemberPitch]; absPoseVarCounts[StateMemberYaw] += poseUpdateVec[StateMemberYaw]; } } else { ROS_WARN_STREAM("Warning: " << poseTopic << " is listed as an input topic, " "but all pose update variables are false"); } RF_DEBUG("Subscribed to " << poseTopic << " (" << poseTopicName << ")nt" << poseTopicName << "_differential is " << (differential ? "true" : "false") << "nt" << poseTopicName << "_rejection_threshold is " << poseMahalanobisThresh << "nt" << poseTopicName << "_queue_size is " << poseQueueSize << "nt" << poseTopicName << " update vector is " << poseUpdateVec); } } while (moreParams); // Repeat for twist topicInd = 0; moreParams = false; do { std::stringstream ss; ss << "twist" << topicInd++; std::string twistTopicName = ss.str(); moreParams = nhLocal_.hasParam(twistTopicName); if (moreParams) { std::string twistTopic; nhLocal_.getParam(twistTopicName, twistTopic); // Check for twist rejection threshold double twistMahalanobisThresh; nhLocal_.param(twistTopicName + std::string("_rejection_threshold"), twistMahalanobisThresh, std::numeric_limits<double>::max()); int twistQueueSize = 1; nhLocal_.param(twistTopicName + "_queue_size", twistQueueSize, 1); bool nodelayTwist = false; nhLocal_.param(twistTopicName + "_nodelay", nodelayTwist, false); // Pull in the sensor's config, zero out values that are invalid for the twist type std::vector<int> twistUpdateVec = loadUpdateConfig(twistTopicName); std::fill(twistUpdateVec.begin() + POSITION_OFFSET, twistUpdateVec.begin() + POSITION_OFFSET + POSE_SIZE, 0); int twistUpdateSum = std::accumulate(twistUpdateVec.begin(), twistUpdateVec.end(), 0); if (twistUpdateSum > 0) { const CallbackData callbackData(twistTopicName, twistUpdateVec, twistUpdateSum, false, false, twistMahalanobisThresh); topicSubs_.push_back( nh_.subscribe<geometry_msgs::TwistWithCovarianceStamped>(twistTopic, twistQueueSize, boost::bind(&RosFilter<T>::twistCallback, this, _1, callbackData, baseLinkFrameId_), ros::VoidPtr(), ros::TransportHints().tcpNoDelay(nodelayTwist))); twistVarCounts[StateMemberVx] += twistUpdateVec[StateMemberVx]; twistVarCounts[StateMemberVy] += twistUpdateVec[StateMemberVy]; twistVarCounts[StateMemberVz] += twistUpdateVec[StateMemberVz]; twistVarCounts[StateMemberVroll] += twistUpdateVec[StateMemberVroll]; twistVarCounts[StateMemberVpitch] += twistUpdateVec[StateMemberVpitch]; twistVarCounts[StateMemberVyaw] += twistUpdateVec[StateMemberVyaw]; } else { ROS_WARN_STREAM("Warning: " << twistTopic << " is listed as an input topic, " "but all twist update variables are false"); } RF_DEBUG("Subscribed to " << twistTopic << " (" << twistTopicName << ")nt" << twistTopicName << "_rejection_threshold is " << twistMahalanobisThresh << "nt" << twistTopicName << "_queue_size is " << twistQueueSize << "nt" << twistTopicName << " update vector is " << twistUpdateVec); } } while (moreParams); // Repeat for IMU topicInd = 0; moreParams = false; do { std::stringstream ss; ss << "imu" << topicInd++; std::string imuTopicName = ss.str(); moreParams = nhLocal_.hasParam(imuTopicName); if (moreParams) { bool differential; nhLocal_.param(imuTopicName + std::string("_differential"), differential, false); // Determine if we want to integrate this sensor relatively bool relative; nhLocal_.param(imuTopicName + std::string("_relative"), relative, false); if (relative && differential) { ROS_WARN_STREAM("Both " << imuTopicName << "_differential" << " and " << imuTopicName << "_relative were set to true. Using differential mode."); relative = false; } std::string imuTopic; nhLocal_.getParam(imuTopicName, imuTopic); // Check for pose rejection threshold double poseMahalanobisThresh; nhLocal_.param(imuTopicName + std::string("_pose_rejection_threshold"), poseMahalanobisThresh, std::numeric_limits<double>::max()); // Check for angular velocity rejection threshold double twistMahalanobisThresh; std::string imuTwistRejectionName = imuTopicName + std::string("_twist_rejection_threshold"); nhLocal_.param(imuTwistRejectionName, twistMahalanobisThresh, std::numeric_limits<double>::max()); // Check for acceleration rejection threshold double accelMahalanobisThresh; nhLocal_.param(imuTopicName + std::string("_linear_acceleration_rejection_threshold"), accelMahalanobisThresh, std::numeric_limits<double>::max()); bool removeGravAcc = false; nhLocal_.param(imuTopicName + "_remove_gravitational_acceleration", removeGravAcc, false); removeGravitationalAcc_[imuTopicName + "_acceleration"] = removeGravAcc; // Now pull in its boolean update vector configuration and differential // update configuration (as this contains pose information) std::vector<int> updateVec = loadUpdateConfig(imuTopicName); // sanity checks for update config settings std::vector<int> positionUpdateVec(updateVec.begin() + POSITION_OFFSET, updateVec.begin() + POSITION_OFFSET + POSITION_SIZE); int positionUpdateSum = std::accumulate(positionUpdateVec.begin(), positionUpdateVec.end(), 0); if (positionUpdateSum > 0) { ROS_WARN_STREAM("Warning: Some position entries in parameter " << imuTopicName << "_config are listed true, " "but sensor_msgs/Imu contains no information about position"); } std::vector<int> linearVelocityUpdateVec(updateVec.begin() + POSITION_V_OFFSET, updateVec.begin() + POSITION_V_OFFSET + LINEAR_VELOCITY_SIZE); int linearVelocityUpdateSum = std::accumulate(linearVelocityUpdateVec.begin(), linearVelocityUpdateVec.end(), 0); if (linearVelocityUpdateSum > 0) { ROS_WARN_STREAM("Warning: Some linear velocity entries in parameter " << imuTopicName << "_config are listed " "true, but an sensor_msgs/Imu contains no information about linear velocities"); } std::vector<int> poseUpdateVec = updateVec; // IMU message contains no information about position, filter everything except orientation std::fill(poseUpdateVec.begin() + POSITION_OFFSET, poseUpdateVec.begin() + POSITION_OFFSET + POSITION_SIZE, 0); std::fill(poseUpdateVec.begin() + POSITION_V_OFFSET, poseUpdateVec.begin() + POSITION_V_OFFSET + TWIST_SIZE, 0); std::fill(poseUpdateVec.begin() + POSITION_A_OFFSET, poseUpdateVec.begin() + POSITION_A_OFFSET + ACCELERATION_SIZE, 0); std::vector<int> twistUpdateVec = updateVec; // IMU message contains no information about linear speeds, filter everything except angular velocity std::fill(twistUpdateVec.begin() + POSITION_OFFSET, twistUpdateVec.begin() + POSITION_OFFSET + POSE_SIZE, 0); std::fill(twistUpdateVec.begin() + POSITION_V_OFFSET, twistUpdateVec.begin() + POSITION_V_OFFSET + LINEAR_VELOCITY_SIZE, 0); std::fill(twistUpdateVec.begin() + POSITION_A_OFFSET, twistUpdateVec.begin() + POSITION_A_OFFSET + ACCELERATION_SIZE, 0); std::vector<int> accelUpdateVec = updateVec; std::fill(accelUpdateVec.begin() + POSITION_OFFSET, accelUpdateVec.begin() + POSITION_OFFSET + POSE_SIZE, 0); std::fill(accelUpdateVec.begin() + POSITION_V_OFFSET, accelUpdateVec.begin() + POSITION_V_OFFSET + TWIST_SIZE, 0); int poseUpdateSum = std::accumulate(poseUpdateVec.begin(), poseUpdateVec.end(), 0); int twistUpdateSum = std::accumulate(twistUpdateVec.begin(), twistUpdateVec.end(), 0); int accelUpdateSum = std::accumulate(accelUpdateVec.begin(), accelUpdateVec.end(), 0); // Check if we're using control input for any of the acceleration variables; turn off if so if (static_cast<bool>(controlUpdateVector[ControlMemberVx]) && static_cast<bool>(accelUpdateVec[StateMemberAx])) { ROS_WARN_STREAM("X acceleration is being measured from IMU; X velocity control input is disabled"); controlUpdateVector[ControlMemberVx] = 0; } if (static_cast<bool>(controlUpdateVector[ControlMemberVy]) && static_cast<bool>(accelUpdateVec[StateMemberAy])) { ROS_WARN_STREAM("Y acceleration is being measured from IMU; Y velocity control input is disabled"); controlUpdateVector[ControlMemberVy] = 0; } if (static_cast<bool>(controlUpdateVector[ControlMemberVz]) && static_cast<bool>(accelUpdateVec[StateMemberAz])) { ROS_WARN_STREAM("Z acceleration is being measured from IMU; Z velocity control input is disabled"); controlUpdateVector[ControlMemberVz] = 0; } int imuQueueSize = 1; nhLocal_.param(imuTopicName + "_queue_size", imuQueueSize, 1); bool nodelayImu = false; nhLocal_.param(imuTopicName + "_nodelay", nodelayImu, false); if (poseUpdateSum + twistUpdateSum + accelUpdateSum > 0) { const CallbackData poseCallbackData(imuTopicName + "_pose", poseUpdateVec, poseUpdateSum, differential, relative, poseMahalanobisThresh); const CallbackData twistCallbackData(imuTopicName + "_twist", twistUpdateVec, twistUpdateSum, differential, relative, twistMahalanobisThresh); const CallbackData accelCallbackData(imuTopicName + "_acceleration", accelUpdateVec, accelUpdateSum, differential, relative, accelMahalanobisThresh); topicSubs_.push_back( nh_.subscribe<sensor_msgs::Imu>(imuTopic, imuQueueSize, boost::bind(&RosFilter<T>::imuCallback, this, _1, imuTopicName, poseCallbackData, twistCallbackData, accelCallbackData), ros::VoidPtr(), ros::TransportHints().tcpNoDelay(nodelayImu))); } else { ROS_WARN_STREAM("Warning: " << imuTopic << " is listed as an input topic, " "but all its update variables are false"); } if (poseUpdateSum > 0) { if (differential) { twistVarCounts[StateMemberVroll] += poseUpdateVec[StateMemberRoll]; twistVarCounts[StateMemberVpitch] += poseUpdateVec[StateMemberPitch]; twistVarCounts[StateMemberVyaw] += poseUpdateVec[StateMemberYaw]; } else { absPoseVarCounts[StateMemberRoll] += poseUpdateVec[StateMemberRoll]; absPoseVarCounts[StateMemberPitch] += poseUpdateVec[StateMemberPitch]; absPoseVarCounts[StateMemberYaw] += poseUpdateVec[StateMemberYaw]; } } if (twistUpdateSum > 0) { twistVarCounts[StateMemberVroll] += twistUpdateVec[StateMemberVroll]; twistVarCounts[StateMemberVpitch] += twistUpdateVec[StateMemberVpitch]; twistVarCounts[StateMemberVyaw] += twistUpdateVec[StateMemberVyaw]; } RF_DEBUG("Subscribed to " << imuTopic << " (" << imuTopicName << ")nt" << imuTopicName << "_differential is " << (differential ? "true" : "false") << "nt" << imuTopicName << "_pose_rejection_threshold is " << poseMahalanobisThresh << "nt" << imuTopicName << "_twist_rejection_threshold is " << twistMahalanobisThresh << "nt" << imuTopicName << "_linear_acceleration_rejection_threshold is " << accelMahalanobisThresh << "nt" << imuTopicName << "_remove_gravitational_acceleration is " << (removeGravAcc ? "true" : "false") << "nt" << imuTopicName << "_queue_size is " << imuQueueSize << "nt" << imuTopicName << " pose update vector is " << poseUpdateVec << "t"<< imuTopicName << " twist update vector is " << twistUpdateVec << "t" << imuTopicName << " acceleration update vector is " << accelUpdateVec); } } while (moreParams); // Now that we've checked if IMU linear acceleration is being used, we can determine our final control parameters if (useControl_ && std::accumulate(controlUpdateVector.begin(), controlUpdateVector.end(), 0) == 0) { ROS_ERROR_STREAM("use_control is set to true, but control_config has only false values. No control term " "will be used."); useControl_ = false; } // If we're using control, set the parameters and create the necessary subscribers if (useControl_) { latestControl_.resize(TWIST_SIZE); latestControl_.setZero(); filter_.setControlParams(controlUpdateVector, controlTimeout, accelerationLimits, accelerationGains, decelerationLimits, decelerationGains); if (stampedControl) { controlSub_ = nh_.subscribe<geometry_msgs::TwistStamped>("cmd_vel", 1, &RosFilter<T>::controlCallback, this); } else { controlSub_ = nh_.subscribe<geometry_msgs::Twist>("cmd_vel", 1, &RosFilter<T>::controlCallback, this); } } /* Warn users about: * 1. Multiple non-differential input sources * 2. No absolute *or* velocity measurements for pose variables */ if (printDiagnostics_) { for (int stateVar = StateMemberX; stateVar <= StateMemberYaw; ++stateVar) { if (absPoseVarCounts[static_cast<StateMembers>(stateVar)] > 1) { std::stringstream stream; stream << absPoseVarCounts[static_cast<StateMembers>(stateVar - POSITION_OFFSET)] << " absolute pose inputs detected for " << stateVariableNames_[stateVar] << ". This may result in oscillations. Please ensure that your variances for each " "measured variable are set appropriately."; addDiagnostic(diagnostic_msgs::DiagnosticStatus::WARN, stateVariableNames_[stateVar] + "_configuration", stream.str(), true); } else if (absPoseVarCounts[static_cast<StateMembers>(stateVar)] == 0) { if ((static_cast<StateMembers>(stateVar) == StateMemberX && twistVarCounts[static_cast<StateMembers>(StateMemberVx)] == 0) || (static_cast<StateMembers>(stateVar) == StateMemberY && twistVarCounts[static_cast<StateMembers>(StateMemberVy)] == 0) || (static_cast<StateMembers>(stateVar) == StateMemberZ && twistVarCounts[static_cast<StateMembers>(StateMemberVz)] == 0 && twoDMode_ == false) || (static_cast<StateMembers>(stateVar) == StateMemberRoll && twistVarCounts[static_cast<StateMembers>(StateMemberVroll)] == 0 && twoDMode_ == false) || (static_cast<StateMembers>(stateVar) == StateMemberPitch && twistVarCounts[static_cast<StateMembers>(StateMemberVpitch)] == 0 && twoDMode_ == false) || (static_cast<StateMembers>(stateVar) == StateMemberYaw && twistVarCounts[static_cast<StateMembers>(StateMemberVyaw)] == 0)) { std::stringstream stream; stream << "Neither " << stateVariableNames_[stateVar] << " nor its " "velocity is being measured. This will result in unbounded " "error growth and erratic filter behavior."; addDiagnostic(diagnostic_msgs::DiagnosticStatus::ERROR, stateVariableNames_[stateVar] + "_configuration", stream.str(), true); } } } } // Load up the process noise covariance (from the launch file/parameter server) Eigen::MatrixXd processNoiseCovariance(STATE_SIZE, STATE_SIZE); processNoiseCovariance.setZero(); XmlRpc::XmlRpcValue processNoiseCovarConfig; if (nhLocal_.hasParam("process_noise_covariance")) { try { nhLocal_.getParam("process_noise_covariance", processNoiseCovarConfig); ROS_ASSERT(processNoiseCovarConfig.getType() == XmlRpc::XmlRpcValue::TypeArray); int matSize = processNoiseCovariance.rows(); for (int i = 0; i < matSize; i++) { for (int j = 0; j < matSize; j++) { try { // These matrices can cause problems if all the types // aren't specified with decimal points. Handle that // using string streams. std::ostringstream ostr; ostr << processNoiseCovarConfig[matSize * i + j]; std::istringstream istr(ostr.str()); istr >> processNoiseCovariance(i, j); } catch(XmlRpc::XmlRpcException &e) { throw e; } catch(...) { throw; } } } RF_DEBUG("Process noise covariance is:n" << processNoiseCovariance << "n"); } catch (XmlRpc::XmlRpcException &e) { ROS_ERROR_STREAM("ERROR reading sensor config: " << e.getMessage() << " for process_noise_covariance (type: " << processNoiseCovarConfig.getType() << ")"); } filter_.setProcessNoiseCovariance(processNoiseCovariance); } // Load up the process noise covariance (from the launch file/parameter server) Eigen::MatrixXd initialEstimateErrorCovariance(STATE_SIZE, STATE_SIZE); initialEstimateErrorCovariance.setZero(); XmlRpc::XmlRpcValue estimateErrorCovarConfig; if (nhLocal_.hasParam("initial_estimate_covariance")) { try { nhLocal_.getParam("initial_estimate_covariance", estimateErrorCovarConfig); ROS_ASSERT(estimateErrorCovarConfig.getType() == XmlRpc::XmlRpcValue::TypeArray); int matSize = initialEstimateErrorCovariance.rows(); for (int i = 0; i < matSize; i++) { for (int j = 0; j < matSize; j++) { try { // These matrices can cause problems if all the types // aren't specified with decimal points. Handle that // using string streams. std::ostringstream ostr; ostr << estimateErrorCovarConfig[matSize * i + j]; std::istringstream istr(ostr.str()); istr >> initialEstimateErrorCovariance(i, j); } catch(XmlRpc::XmlRpcException &e) { throw e; } catch(...) { throw; } } } RF_DEBUG("Initial estimate error covariance is:n" << initialEstimateErrorCovariance << "n"); } catch (XmlRpc::XmlRpcException &e) { ROS_ERROR_STREAM("ERROR reading initial_estimate_covariance (type: " << estimateErrorCovarConfig.getType() << "): " << e.getMessage()); } catch(...) { ROS_ERROR_STREAM( "ERROR reading initial_estimate_covariance (type: " << estimateErrorCovarConfig.getType() << ")"); } filter_.setEstimateErrorCovariance(initialEstimateErrorCovariance); } }

2.2 periodicUpdate() 循环处理函数

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
template<typename T> void RosFilter<T>::periodicUpdate(const ros::TimerEvent& event) { // Warn the user if the update took too long (> 2 cycles) const double loop_elapsed = (event.current_real - event.last_expected).toSec(); if (loop_elapsed > 2./frequency_) { ROS_WARN_STREAM("Failed to meet update rate! Took " << std::setprecision(20) << loop_elapsed); } // Wait for the filter to be enabled if (!enabled_) { ROS_INFO_STREAM_ONCE("Filter is disabled. To enable it call the " << enableFilterSrv_.getService() << " service"); return; } ros::Time curTime = ros::Time::now(); if (toggledOn_) { // Now we'll integrate any measurements we've received if requested integrateMeasurements(curTime); } else { // clear out measurements since we're not currently processing new entries clearMeasurementQueue(); // Reset last measurement time so we don't get a large time delta on toggle on if (filter_.getInitializedStatus()) { filter_.setLastMeasurementTime(ros::Time::now().toSec()); } } // Get latest state and publish it nav_msgs::Odometry filteredPosition; if (getFilteredOdometryMessage(filteredPosition)) { worldBaseLinkTransMsg_.transform = tf2::toMsg(tf2::Transform::getIdentity()); worldBaseLinkTransMsg_.header.stamp = filteredPosition.header.stamp + tfTimeOffset_; worldBaseLinkTransMsg_.header.frame_id = filteredPosition.header.frame_id; worldBaseLinkTransMsg_.child_frame_id = filteredPosition.child_frame_id; worldBaseLinkTransMsg_.transform.translation.x = filteredPosition.pose.pose.position.x; worldBaseLinkTransMsg_.transform.translation.y = filteredPosition.pose.pose.position.y; worldBaseLinkTransMsg_.transform.translation.z = filteredPosition.pose.pose.position.z; worldBaseLinkTransMsg_.transform.rotation = filteredPosition.pose.pose.orientation; // the filteredPosition is the message containing the state and covariances: nav_msgs Odometry if (!validateFilterOutput(filteredPosition)) { ROS_ERROR_STREAM("Critical Error, NaNs were detected in the output state of the filter." << " This was likely due to poorly coniditioned process, noise, or sensor covariances."); } // If the worldFrameId_ is the odomFrameId_ frame, then we can just send the transform. If the // worldFrameId_ is the mapFrameId_ frame, we'll have some work to do. if (publishTransform_) { if (filteredPosition.header.frame_id == odomFrameId_) { worldTransformBroadcaster_.sendTransform(worldBaseLinkTransMsg_); } else if (filteredPosition.header.frame_id == mapFrameId_) { try { tf2::Transform worldBaseLinkTrans; tf2::fromMsg(worldBaseLinkTransMsg_.transform, worldBaseLinkTrans); tf2::Transform baseLinkOdomTrans; tf2::fromMsg(tfBuffer_.lookupTransform(baseLinkFrameId_, odomFrameId_, ros::Time(0)).transform, baseLinkOdomTrans); /* * First, see these two references: * http://wiki.ros.org/tf/Overview/Using%20Published%20Transforms#lookupTransform * http://wiki.ros.org/geometry/CoordinateFrameConventions#Transform_Direction * We have a transform from mapFrameId_->baseLinkFrameId_, but it would actually transform * a given pose from baseLinkFrameId_->mapFrameId_. We then used lookupTransform, whose * first two arguments are target frame and source frame, to get a transform from * baseLinkFrameId_->odomFrameId_. However, this transform would actually transform data * from odomFrameId_->baseLinkFrameId_. Now imagine that we have a position in the * mapFrameId_ frame. First, we multiply it by the inverse of the * mapFrameId_->baseLinkFrameId, which will transform that data from mapFrameId_ to * baseLinkFrameId_. Now we want to go from baseLinkFrameId_->odomFrameId_, but the * transform we have takes data from odomFrameId_->baseLinkFrameId_, so we need its * inverse as well. We have now transformed our data from mapFrameId_ to odomFrameId_. * However, if we want other users to be able to do the same, we need to broadcast * the inverse of that entire transform. */ tf2::Transform mapOdomTrans; mapOdomTrans.mult(worldBaseLinkTrans, baseLinkOdomTrans); geometry_msgs::TransformStamped mapOdomTransMsg; mapOdomTransMsg.transform = tf2::toMsg(mapOdomTrans); mapOdomTransMsg.header.stamp = filteredPosition.header.stamp + tfTimeOffset_; mapOdomTransMsg.header.frame_id = mapFrameId_; mapOdomTransMsg.child_frame_id = odomFrameId_; worldTransformBroadcaster_.sendTransform(mapOdomTransMsg); } catch(...) { ROS_ERROR_STREAM_DELAYED_THROTTLE(5.0, "Could not obtain transform from " << odomFrameId_ << "->" << baseLinkFrameId_); } } else { ROS_ERROR_STREAM("Odometry message frame_id was " << filteredPosition.header.frame_id << ", expected " << mapFrameId_ << " or " << odomFrameId_); } } // Fire off the position and the transform positionPub_.publish(filteredPosition); if (printDiagnostics_) { freqDiag_->tick(); } } // Publish the acceleration if desired and filter is initialized geometry_msgs::AccelWithCovarianceStamped filteredAcceleration; if (publishAcceleration_ && getFilteredAccelMessage(filteredAcceleration)) { accelPub_.publish(filteredAcceleration); } /* Diagnostics can behave strangely when playing back from bag * files and using simulated time, so we have to check for * time suddenly moving backwards as well as the standard * timeout criterion before publishing. */ double diagDuration = (curTime - lastDiagTime_).toSec(); if (printDiagnostics_ && (diagDuration >= diagnosticUpdater_.getPeriod() || diagDuration < 0.0)) { diagnosticUpdater_.force_update(); lastDiagTime_ = curTime; } // Clear out expired history data if (smoothLaggedData_) { clearExpiredHistory(filter_.getLastMeasurementTime() - historyLength_); } }

2.2.1 Ekf::predict()

R = R z R y R x = ( c o s θ y c o s θ z s i n θ x s i n θ y c o s θ z − c o s θ x s i n θ z c o s θ x s i n θ y c o s θ z + s i n θ x s i n θ z c o s θ y s i n θ z s i n θ x s i n θ y s i n θ z + c o s θ x c o s θ z c o s θ x s i n θ y s i n θ z − s i n θ x c o s θ z − s i n θ y s i n θ x c o s θ y c o s θ x c o s θ y ) ( 1 ) R = R_zR_yR_x \= left( begin{array}{ccc} costheta_y costheta_z & sintheta_x sintheta_y costheta_z - costheta_x sintheta_z& costheta_x sintheta_y costheta_z + sintheta_x sintheta_z\ costheta_y sintheta_z & sintheta_x sintheta_y sintheta_z + costheta_x costheta_z& costheta_x sintheta_y sintheta_z - sintheta_x costheta_z\ -sintheta_y &sintheta_x costheta_y &costheta_x costheta_y\ end{array} right) (1) R=RzRyRx=cosθycosθzcosθysinθzsinθysinθxsinθycosθzcosθxsinθzsinθxsinθysinθz+cosθxcosθzsinθxcosθycosθxsinθycosθz+sinθxsinθzcosθxsinθysinθzsinθxcosθzcosθxcosθy1
注意,状态向量中 ( x , y , z , r o l l , p i t c h , y a w l ) (x,y,z,roll,pitch,yawl) x,y,z,roll,pitch,yawl是在世界坐标系下,状态向量中 ( x ˙ , y ˙ , z ˙ , θ x ˙ , θ y ˙ , θ z ˙ , x ¨ , y ¨ , z ¨ ) (dot{x},dot{y},dot{z},dot{theta_x},dot{theta_y},dot{theta_z},ddot{x},ddot{y},ddot{z}) x˙,y˙,z˙,θx˙,θy˙,θz˙,x¨,y¨,z¨是在载体坐标系下的,因此在载体坐标系下进行运动估计后,还需要根据式(1)中的坐标转换矩阵将结果转换到世界坐标系下,于是就可以得到代码中的状态转移矩阵:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
//X是在世界坐标系下,X的一阶导和二阶导是在载体坐标系下,因此需要根据k-1时刻的姿态转换到世界坐标系下 // Prepare the transfer function transferFunction_(StateMemberX, StateMemberVx) = cy * cp * delta; transferFunction_(StateMemberX, StateMemberVy) = (cy * sp * sr - sy * cr) * delta; transferFunction_(StateMemberX, StateMemberVz) = (cy * sp * cr + sy * sr) * delta; transferFunction_(StateMemberX, StateMemberAx) = 0.5 * transferFunction_(StateMemberX, StateMemberVx) * delta; transferFunction_(StateMemberX, StateMemberAy) = 0.5 * transferFunction_(StateMemberX, StateMemberVy) * delta; transferFunction_(StateMemberX, StateMemberAz) = 0.5 * transferFunction_(StateMemberX, StateMemberVz) * delta; transferFunction_(StateMemberY, StateMemberVx) = sy * cp * delta; transferFunction_(StateMemberY, StateMemberVy) = (sy * sp * sr + cy * cr) * delta; transferFunction_(StateMemberY, StateMemberVz) = (sy * sp * cr - cy * sr) * delta; transferFunction_(StateMemberY, StateMemberAx) = 0.5 * transferFunction_(StateMemberY, StateMemberVx) * delta; transferFunction_(StateMemberY, StateMemberAy) = 0.5 * transferFunction_(StateMemberY, StateMemberVy) * delta; transferFunction_(StateMemberY, StateMemberAz) = 0.5 * transferFunction_(StateMemberY, StateMemberVz) * delta; transferFunction_(StateMemberZ, StateMemberVx) = -sp * delta; transferFunction_(StateMemberZ, StateMemberVy) = cp * sr * delta; transferFunction_(StateMemberZ, StateMemberVz) = cp * cr * delta; transferFunction_(StateMemberZ, StateMemberAx) = 0.5 * transferFunction_(StateMemberZ, StateMemberVx) * delta; transferFunction_(StateMemberZ, StateMemberAy) = 0.5 * transferFunction_(StateMemberZ, StateMemberVy) * delta; transferFunction_(StateMemberZ, StateMemberAz) = 0.5 * transferFunction_(StateMemberZ, StateMemberVz) * delta; transferFunction_(StateMemberRoll, StateMemberVroll) = delta; transferFunction_(StateMemberRoll, StateMemberVpitch) = sr * tp * delta; transferFunction_(StateMemberRoll, StateMemberVyaw) = cr * tp * delta; transferFunction_(StateMemberPitch, StateMemberVpitch) = cr * delta; transferFunction_(StateMemberPitch, StateMemberVyaw) = -sr * delta; transferFunction_(StateMemberYaw, StateMemberVpitch) = sr * cpi * delta; transferFunction_(StateMemberYaw, StateMemberVyaw) = cr * cpi * delta; transferFunction_(StateMemberVx, StateMemberAx) = delta; transferFunction_(StateMemberVy, StateMemberAy) = delta; transferFunction_(StateMemberVz, StateMemberAz) = delta;

由于状态转移矩阵中存在这三角函数,因此这个状态转移矩阵是非线性的,因此必须求解与状态转移矩阵对应的雅克比矩阵transferFunctionJacobian_,在此以 ∂ x ∂ θ x frac {partial x}{partial theta_x} θxx为例记性推导:
由非线性状态转移矩阵transferFunction_可知:
x k = x k − 1 + c o s θ z c o s θ y Δ t v x + ( c o s θ z s i n θ y s i n θ x − s i n θ z c o s θ x ) Δ t v y + ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) Δ t v z + 1 2 c o s θ z c o s θ y Δ t Δ t a x + 1 2 ( c o s θ z s i n θ y s i n θ x − s i n θ z c o s θ x ) Δ t Δ t a y + 1 2 ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) Δ t Δ t a z x_k = x_{k-1} + costheta_zcostheta_yDelta tv_x + (costheta_zsintheta_ysintheta_x-sintheta_zcostheta_x)Delta tv_y +\ (costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)Delta tv_z + \ frac{1}2costheta_zcostheta_yDelta tDelta ta_x+\ frac{1}2(costheta_zsintheta_ysintheta_x-sintheta_zcostheta_x)Delta tDelta ta_y + \ frac{1}2 (costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)Delta tDelta ta_z xk=xk1+cosθzcosθyΔtvx+(cosθzsinθysinθxsinθzcosθx)Δtvy+(cosθzsinθycosθx+sinθzsinθx)Δtvz+21cosθzcosθyΔtΔtax+21(cosθzsinθysinθxsinθzcosθx)ΔtΔtay+21(cosθzsinθycosθx+sinθzsinθx)ΔtΔtaz
由上式对 θ x theta_x θx求偏导可以得到:
∂ x k ∂ θ x = ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) Δ t v y + ( − c o s θ z s i n θ y s i n θ x + s i n θ z s i n θ y ) Δ t v z + 1 2 ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) Δ t Δ t a y + 1 2 ( − c o s θ z s i n θ y s i n θ x + s i n θ z s i n θ y Δ t Δ t a z = [ ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) Δ t v y + ( − c o s θ z s i n θ y s i n θ x + s i n θ z s i n θ y ) Δ t v z ] Δ t + [ ( c o s θ z s i n θ y c o s θ x + s i n θ z s i n θ x ) a y + ( − c o s θ z s i n θ y s i n θ x + s i n θ z s i n θ y ) a z ] 1 2 Δ t Δ t frac{partial x_k}{partialtheta_x} = (costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)Delta tv_y +\ (-costheta_zsintheta_ysintheta_x + sintheta_zsintheta_y)Delta tv_z+\ frac{1}2(costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)Delta tDelta ta_y +\ frac{1}2(-costheta_zsintheta_ysintheta_x + sintheta_zsintheta_yDelta tDelta ta_z\ \ =[(costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)Delta tv_y + (-costheta_zsintheta_ysintheta_x + sintheta_zsintheta_y)Delta tv_z]Delta t+\ [(costheta_zsintheta_ycostheta_x + sintheta_zsintheta_x)a_y + (-costheta_zsintheta_ysintheta_x + sintheta_zsintheta_y)a_z]frac{1}2Delta tDelta t θxxk=(cosθzsinθycosθx+sinθzsinθx)Δtvy+(cosθzsinθysinθx+sinθzsinθy)Δtvz+21(cosθzsinθycosθx+sinθzsinθx)ΔtΔtay+21(cosθzsinθysinθx+sinθzsinθyΔtΔtaz=[(cosθzsinθycosθx+sinθzsinθx)Δtvy+(cosθzsinθysinθx+sinθzsinθy)Δtvz]Δt+[(cosθzsinθycosθx+sinθzsinθx)ay+(cosθzsinθysinθx+sinθzsinθy)az]21ΔtΔt
于是可以得到如下所示的雅克比矩阵 F F F

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
// Prepare the transfer function Jacobian. This function is analytically derived from the // transfer function. double xCoeff = 0.0; double yCoeff = 0.0; double zCoeff = 0.0; double oneHalfATSquared = 0.5 * delta * delta; yCoeff = cy * sp * cr + sy * sr; zCoeff = -cy * sp * sr + sy * cr; double dFx_dR = (yCoeff * yVel + zCoeff * zVel) * delta + (yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; double dFR_dR = 1.0 + (cr * tp * pitchVel - sr * tp * yawVel) * delta; xCoeff = -cy * sp; yCoeff = cy * cp * sr; zCoeff = cy * cp * cr; double dFx_dP = (xCoeff * xVel + yCoeff * yVel + zCoeff * zVel) * delta + (xCoeff * xAcc + yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; double dFR_dP = (cpi * cpi * sr * pitchVel + cpi * cpi * cr * yawVel) * delta; xCoeff = -sy * cp; yCoeff = -sy * sp * sr - cy * cr; zCoeff = -sy * sp * cr + cy * sr; double dFx_dY = (xCoeff * xVel + yCoeff * yVel + zCoeff * zVel) * delta + (xCoeff * xAcc + yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; yCoeff = sy * sp * cr - cy * sr; zCoeff = -sy * sp * sr - cy * cr; double dFy_dR = (yCoeff * yVel + zCoeff * zVel) * delta + (yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; double dFP_dR = (-sr * pitchVel - cr * yawVel) * delta; xCoeff = -sy * sp; yCoeff = sy * cp * sr; zCoeff = sy * cp * cr; double dFy_dP = (xCoeff * xVel + yCoeff * yVel + zCoeff * zVel) * delta + (xCoeff * xAcc + yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; xCoeff = cy * cp; yCoeff = cy * sp * sr - sy * cr; zCoeff = cy * sp * cr + sy * sr; double dFy_dY = (xCoeff * xVel + yCoeff * yVel + zCoeff * zVel) * delta + (xCoeff * xAcc + yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; yCoeff = cp * cr; zCoeff = -cp * sr; double dFz_dR = (yCoeff * yVel + zCoeff * zVel) * delta + (yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; double dFY_dR = (cr * cpi * pitchVel - sr * cpi * yawVel) * delta; xCoeff = -cp; yCoeff = -sp * sr; zCoeff = -sp * cr; double dFz_dP = (xCoeff * xVel + yCoeff * yVel + zCoeff * zVel) * delta + (xCoeff * xAcc + yCoeff * yAcc + zCoeff * zAcc) * oneHalfATSquared; double dFY_dP = (sr * tp * cpi * pitchVel + cr * tp * cpi * yawVel) * delta; // Much of the transfer function Jacobian is identical to the transfer function transferFunctionJacobian_ = transferFunction_; transferFunctionJacobian_(StateMemberX, StateMemberRoll) = dFx_dR; transferFunctionJacobian_(StateMemberX, StateMemberPitch) = dFx_dP; transferFunctionJacobian_(StateMemberX, StateMemberYaw) = dFx_dY; transferFunctionJacobian_(StateMemberY, StateMemberRoll) = dFy_dR; transferFunctionJacobian_(StateMemberY, StateMemberPitch) = dFy_dP; transferFunctionJacobian_(StateMemberY, StateMemberYaw) = dFy_dY; transferFunctionJacobian_(StateMemberZ, StateMemberRoll) = dFz_dR; transferFunctionJacobian_(StateMemberZ, StateMemberPitch) = dFz_dP; transferFunctionJacobian_(StateMemberRoll, StateMemberRoll) = dFR_dR; transferFunctionJacobian_(StateMemberRoll, StateMemberPitch) = dFR_dP; transferFunctionJacobian_(StateMemberPitch, StateMemberRoll) = dFP_dR; transferFunctionJacobian_(StateMemberYaw, StateMemberRoll) = dFY_dR; transferFunctionJacobian_(StateMemberYaw, StateMemberPitch) = dFY_dP; FB_DEBUG("Transfer function is:n" << transferFunction_ << "nTransfer function Jacobian is:n" << transferFunctionJacobian_ << "nProcess noise covariance is:n" << processNoiseCovariance_ << "nCurrent state is:n" << state_ << "n");

EKF公式和代码的对应关系为:

Eigen::VectorXd stateSubset(updateSize) -> 状态向量: X X X
Eigen::VectorXd measurementSubset(updateSize) -> 观测向量: Z Z Z
Eigen::MatrixXd measurementCovarianceSubset(updateSize, updateSize); ->测量噪声: R R R
Eigen::MatrixXd stateToMeasurementSubset(updateSize, state_.rows()); -> 测量矩阵: H H H
Eigen::MatrixXd kalmanGainSubset(state_.rows(), updateSize); -> 卡尔曼增益: K K K
Eigen::VectorXd innovationSubset(updateSize); -> 观测误差: Z − H X Z-HX ZHX
transferFunctionJacobian_ -> 线性化后的状态转移矩阵: F F F
于是可以得到:
预测状态向量的状态转移矩阵为:
X ˉ k = f ( X ^ k − 1 , u k ) bar{X}_k = f(hat{X}_{k-1},u_k) Xˉk=f(X^k1,uk)
即为:
X ˉ k = A X ^ k − 1 + u k bar{X}_k = Ahat{X}_{k-1} + u_k Xˉk=AX^k1+uk
对应的代码为:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// (1) Apply control terms, which are actually accelerations state_(StateMemberVroll) += controlAcceleration_(ControlMemberVroll) * delta; state_(StateMemberVpitch) += controlAcceleration_(ControlMemberVpitch) * delta; state_(StateMemberVyaw) += controlAcceleration_(ControlMemberVyaw) * delta; state_(StateMemberAx) = (controlUpdateVector_[ControlMemberVx] ? controlAcceleration_(ControlMemberVx) : state_(StateMemberAx)); state_(StateMemberAy) = (controlUpdateVector_[ControlMemberVy] ? controlAcceleration_(ControlMemberVy) : state_(StateMemberAy)); state_(StateMemberAz) = (controlUpdateVector_[ControlMemberVz] ? controlAcceleration_(ControlMemberVz) : state_(StateMemberAz)); // (2) Project the state forward: x = Ax + Bu (really, x = f(x, u)) state_ = transferFunction_ * state_;

预测状态向量的噪声协方差矩阵为:
P ˉ k = F P ^ k F T + R k bar P_k = Fhat P_kF^T + R_k Pˉk=FP^kFT+Rk
对应的代码为:

复制代码
1
2
3
4
5
6
7
8
9
// (3) Project the error forward: P = J * P * J' + Q estimateErrorCovariance_ = (transferFunctionJacobian_ * estimateErrorCovariance_ * transferFunctionJacobian_.transpose()); estimateErrorCovariance_.noalias() += delta * (*processNoiseCovariance); FB_DEBUG("Predicted estimate error covariance is:n" << estimateErrorCovariance_ << "nn--------------------- /Ekf::predict ----------------------n");

2.2.2 Ekf::correct()

在校正过程中,首先计算Kalman增益:
K k = P ˉ k H T H P ˉ k H T + Q k \ K_k = frac{bar P_kH^T}{Hbar P_kH^T + Q_k} Kk=HPˉkHT+QkPˉkHT
对应的代码为:

复制代码
1
2
3
4
5
// (1) Compute the Kalman gain: K = (PH') / (HPH' + R) Eigen::MatrixXd pht = estimateErrorCovariance_ * stateToMeasurementSubset.transpose(); Eigen::MatrixXd hphrInv = (stateToMeasurementSubset * pht + measurementCovarianceSubset).inverse(); kalmanGainSubset.noalias() = pht * hphrInv;

然后利用当前观测和预测结果进行校正获得最终融合的结果:
X ^ k = X ˉ k + K k ( Z k − h ( X ˉ k ) ) hat X_k = bar X_k + K_k(Z_k - h(bar X_k)) X^k=Xˉk+Kk(Zkh(Xˉk))
对应的代码为:

复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
innovationSubset = (measurementSubset - stateSubset); // Wrap angles in the innovation for (size_t i = 0; i < updateSize; ++i) { if (updateIndices[i] == StateMemberRoll || updateIndices[i] == StateMemberPitch || updateIndices[i] == StateMemberYaw) { while (innovationSubset(i) < -PI) { innovationSubset(i) += TAU; } while (innovationSubset(i) > PI) { innovationSubset(i) -= TAU; } } } // (2) Check Mahalanobis distance between mapped measurement and state. if (checkMahalanobisThreshold(innovationSubset, hphrInv, measurement.mahalanobisThresh_)) { // (3) Apply the gain to the difference between the state and measurement: x = x + K(z - Hx) state_.noalias() += kalmanGainSubset * innovationSubset;

并获得最终状态的噪声协方差矩阵:
P ^ k = ( I − K k H ) P ˉ k ( I − K k H ) T + K k R K k T hat P_k =(I - K_kH)bar P_k(I - K_kH)^T+K_kRK_k^T P^k=(IKkH)Pˉk(IKkH)T+KkRKkT
对应的代码为:

复制代码
1
2
3
4
5
6
7
8
// (4) Update the estimate error covariance using the Joseph form: (I - KH)P(I - KH)' + KRK' Eigen::MatrixXd gainResidual = identity_; gainResidual.noalias() -= kalmanGainSubset * stateToMeasurementSubset; estimateErrorCovariance_ = gainResidual * estimateErrorCovariance_ * gainResidual.transpose(); estimateErrorCovariance_.noalias() += kalmanGainSubset * measurementCovarianceSubset * kalmanGainSubset.transpose();

未完,待续……

最后

以上就是疯狂心锁最近收集整理的关于robot_localization 源码解析(1)ekf_localization_node的全部内容,更多相关robot_localization内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(76)

评论列表共有 0 条评论

立即
投稿
返回
顶部