概述
线程池UML类图
Executor是一个接口,定义一个 void execute(Runnable command); 接口,子类实现这个接口,可以传递一个Runnable的接口进去,来处理这个接口。
execute方法
public void execute(Runnable command) {
// 参数空值校验
if (command == null)
throw new NullPointerException();
// 获取线程池状态
int c = ctl.get();
// 通过workerCountOf(c)方法获取到当前线程池的线程个数,如果小于核心线程大小,则进行addWorker(command, true)操作
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
else if (!addWorker(command, false))
reject(command);
}
private boolean addWorker(Runnable firstTask, boolean core) {
// 标记多层循环跳出位置,并重置循环
retry:
for (;;) {
// 获取线程池状态
int c = ctl.get();
// 根据线程池状态进行运行状态计算
int rs = runStateOf(c);
// Check if queue empty only if necessary.
// 如果线程池状态值大于SHUTDOWN 并且 线程池状态不是shutdown, firstTask 任务不为空,工作队列是空,结束并返回false
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
// 多重检测获取工作线程数
int wc = workerCountOf(c);
如果工作线程数大于容量 或者 根据core布尔值进行判断工作线程大于核心线程或者最大线程数则返回false
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// cas方式比较c的大小,如果不一致则重新进入循环
if (compareAndIncrementWorkerCount(c))
break retry;
// Re-read ctl 重读一次ctl值
c = ctl.get();
// 如果不相同了进行重新循环
if (runStateOf(c) != rs)
continue retry;
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
创建Worker对象,构造函数中进行线程创建,并持有在w对象下
w = new Worker(firstTask);
// 获取生成的线程
final Thread t = w.thread;
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//重新检查状态.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 把Worker加入到HashSet<Worker> workers中保存
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 如果worker增加到workers中则进行线程启动
if (workerAdded) {
// 最后调用 线程的 start方法,jvm启动一个线程并等待执行worker实现的run方法
t.start();
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
//Worker类实现Runable重写了run方法
public void run() {
// 调用用runWorker方法,传递Worker对象 ,因为 worker类是一个Runnable和AQS的 子类
runWorker(this);
}
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
// 获取工作任务
Runnable task = w.firstTask;
// 之后对任务置空
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 根据工作任务是否为空和获取任务为条件执行
while (task != null || (task = getTask()) != null) {
w.lock();
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 获取实现了Runable的task,执行重写的run方法,还有submit提交时的callable重写的run方法
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 最终处理退出时、或者getwork返回null时即对线程过期
processWorkerExit(w, completedAbruptly);
}
}
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
// 是否允许核心线程超时回收或者工作线程数大于核心线程数,
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
如果工作线程大于最大线程池容量或者timed为true 并且 工作线程大于1或者任务队列是空则进行工作线程减少并返回结果null
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
// 如果超时并且workcount大于核心线程数时,进行减少WorkerCount
if (compareAndDecrementWorkerCount(c))
// 返回null
return null;
continue;
}
try {
// 如果为true,则从工作队列获取一个在最大存活时间内存活的任务,否则工作队列调用take方法阻塞等待获取
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
private void processWorkerExit(Worker w, boolean completedAbruptly) {
// 如果被中断进行工作线程减员
if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
decrementWorkerCount();
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
completedTaskCount += w.completedTasks;
// 移除worker线程对象,也就移除了线程
workers.remove(w);
} finally {
mainLock.unlock();
}
// 尝试终止线程池
tryTerminate();
int c = ctl.get();
if (runStateLessThan(c, STOP)) {
if (!completedAbruptly) {
int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
if (min == 0 && ! workQueue.isEmpty())
min = 1;
if (workerCountOf(c) >= min)
return; // replacement not needed
}
addWorker(null, false);
}
}
private void decrementWorkerCount() {
// 死循环进行cas比较并减少工作任务线程数量
do {} while (! compareAndDecrementWorkerCount(ctl.get()));
}
submit方法
submit 方法在ThreadPoolExecutor类的抽象父类AbstractExecutorService下的公共方法
public FutureTask(Callable<V> callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
// 调用FutureTask 的构造方法
return new FutureTask<T>(runnable, value);
}
protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
// 调用FutureTask 的构造方法
return new FutureTask<T>(callable);
}
// 提交一个runnable任务
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
// 调用newTaskFor 重载两个参数的方法
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Runnable task, T result) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task, result);
// 执行 ThreadPoolExecutor的execute方法
execute(ftask);
return ftask;
}
/**
* @throws RejectedExecutionException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
*/
public <T> Future<T> submit(Callable<T> task) {
if (task == null) throw new NullPointerException();
RunnableFuture<T> ftask = newTaskFor(task);
execute(ftask);
return ftask;
}
// FutureTask 重写的runnable 的run方法
public void run() {
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
// 调用 RunnableAdapter 的重写Callable接口的call方法,将结果赋值给result
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
// 执行后 将结果赋值
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
赋值给outcome字段
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
拒绝策略
线程池ThreadPoolExecutor这个类中通过内部类继承RejectedExecutionHandler接口实现的拒绝处理方法。面向接口编程
//ThreadPoolExecutor execute方法会调用这个拒绝方法
final void reject(Runnable command) {
handler.rejectedExecution(command, this);
}
public interface RejectedExecutionHandler {
void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}
public static class AbortPolicy implements RejectedExecutionHandler {
public AbortPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
// 在调用时抛出异常
throw new RejectedExecutionException("Task " + r.toString() +
" rejected from " +
e.toString());
}
}
public static class DiscardPolicy implements RejectedExecutionHandler {
public DiscardPolicy() { }
// 不处理
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
}
}
public static class CallerRunsPolicy implements RejectedExecutionHandler {
public CallerRunsPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
// 判断线程池是否调用shutdown方法
if (!e.isShutdown()) {
// 如果没有则在当前线程调用此任务
r.run();
}
}
}
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
public DiscardOldestPolicy() { }
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
// 如果为shutdown
if (!e.isShutdown()) {
// 丢弃一个队列中的任务
e.getQueue().poll();
// 调用ThreadPoolExecutor execute提交一个任务
e.execute(r);
}
}
}
最后
以上就是动人大米为你收集整理的java线程池源码分析的全部内容,希望文章能够帮你解决java线程池源码分析所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复