概述
使用了数据集Oxford-IIIT Pet中的三类猫和狗的数据,猫和狗的数据分别为570多张。
Oxford-IIIT Pet包含 37 种宠物类别的图像数据集,每个类别约有 200 张图像。这些图像在比例、姿势以及光照方面有着丰富的变化。本数据集也可以用于目标检测定位。
#! /usr/bin/python
# -*- coding:utf-8 -*-
#alexnet
import os
import time
import glob
import tensorflow as tf
import numpy as np
from skimage import io,transform
#数据集地址
image_path = '/home/muyangren/projectdir/tensorflow/PetTf/pet_photos_cd/'
#模型保存地址
model_path = '/home/muyangren/projectdir/tensorflow/PetTf/pet_models'
#TensorBorad log
log_dir = '/home/muyangren/projectdir/tensorflow/PetTf/log'
#将所有图片resize成227*227
w = 227
h = 227
c = 3
#读取图片
def read_image(image_path):
cate = [image_path + x for x in os.listdir(image_path) if os.path.isdir(image_path + x)]
imgs = []
labels = []
for idx, folder in enumerate(cate):
for im in glob.glob(folder + '/*.jpg'):
print('reading the image:%s' %(im))
img = io.imread(im)
img = transform.resize(img, (w, h))
imgs.append(img)
labels.append(idx)
return np.asarray(imgs, np.float32), np.asarray(labels, np.int32)
data, label=read_image(image_path)
#打乱顺序
num_example = data.shape[0]
arr = np.arange(num_example)
np.random.shuffle(arr)
data = data[arr]
label = label[arr]
#将所有数据分为训练集和验证集
ratio = 0.8
s = np.int(num_example * ratio)
x_train = data[:s]
y_train = label[:s]
x_val = data[s:]
y_val = label[s:]
############构建网络##########
#占位符
x = tf.placeholder(tf.float32, shape = [None, w, h, c], name = 'x')
y_ = tf.placeholder(tf.int32, shape = [None,], name = 'y_')
def inference(input_tensor, train, regularizer):
with tf.variable_scope("layer1-conv1"):
conv1_weights = tf.get_variable("weight", [11, 11, 3, 96], initializer = tf.truncated_normal_initializer(stddev = 0.1))
conv1_biases = tf.get_variable("biases", [96], initializer = tf.constant_initializer(0.0))
conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides = [1, 4, 4, 1], padding = "SAME")
relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))
with tf.name_scope("layer2-pool1"):
pool1 = tf.nn.max_pool(relu1, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = "VALID")
with tf.variable_scope("layer3-conv2"):
conv2_weights = tf.get_variable("weight", [5, 5, 96, 256], initializer = tf.truncated_normal_initializer(stddev = 0.1))
conv2_biases = tf.get_variable("biases", [256], initializer = tf.constant_initializer(0.0))
conv2 = tf.nn.conv2d(pool1, conv2_weights, strides = [1, 1, 1, 1], padding = "SAME")
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))
with tf.name_scope("layer4-pool2"):
pool2 = tf.nn.max_pool(relu2, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = "VALID")
with tf.variable_scope("layer5-conv3"):
conv3_weights = tf.get_variable("weight", [3, 3, 256, 384], initializer = tf.truncated_normal_initializer(stddev = 0.1))
conv3_biases = tf.get_variable("biases", [384], initializer = tf.constant_initializer(0.0))
conv3 = tf.nn.conv2d(pool2, conv3_weights, strides = [1, 1, 1, 1], padding = "SAME")
relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))
with tf.variable_scope("layer6-conv4"):
conv4_weights = tf.get_variable("weight", [3, 3, 384, 384], initializer = tf.truncated_normal_initializer(stddev = 0.1))
conv4_biases = tf.get_variable("biases", [384], initializer = tf.constant_initializer(0.0))
conv4 = tf.nn.conv2d(conv3, conv4_weights, strides = [1, 1, 1, 1], padding = "SAME")
relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))
with tf.variable_scope("layer7-conv5"):
conv5_weights = tf.get_variable("weight", [3, 3, 384, 256], initializer = tf.truncated_normal_initializer(stddev = 0.1))
conv5_biases = tf.get_variable("biases", [256], initializer = tf.constant_initializer(0.0))
conv5 = tf.nn.conv2d(conv4, conv5_weights, strides = [1, 1, 1, 1], padding = "SAME")
relu5 = tf.nn.relu(tf.nn.bias_add(conv5, conv5_biases))
with tf.name_scope("layer8-pool3"):
pool3 = tf.nn.max_pool(relu5, ksize = [1, 3, 3, 1], strides = [1, 2, 2, 1], padding = "VALID")
nodes = 6 * 6 * 256
reshaped = tf.reshape(pool3, [-1, nodes])
with tf.variable_scope("layer9-fc1"):
fc1_weights = tf.get_variable("weight", [nodes, 4096], initializer = tf.truncated_normal_initializer(stddev = 0.1))
if regularizer != None:
tf.add_to_collection("losses", regularizer(fc1_weights))
fc1_biases = tf.get_variable("bias", [4096], initializer = tf.constant_initializer(0.1))
fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)
if train:
fc1 = tf.nn.dropout(fc1, 0.5)
with tf.variable_scope("layer10-fc2"):
fc2_weights = tf.get_variable("weight", [4096, 4096], initializer = tf.truncated_normal_initializer(stddev = 0.1))
if regularizer != None:
tf.add_to_collection("losses", regularizer(fc2_weights))
fc2_biases = tf.get_variable("bias", [4096], initializer = tf.constant_initializer(0.1))
fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)
if train:
fc2 = tf.nn.dropout(fc2, 0.5)
with tf.variable_scope("layer11-fc3"):
fc3_weights = tf.get_variable("weight", [4096, 2], initializer = tf.truncated_normal_initializer(stddev = 0.1))
if regularizer != None:
tf.add_to_collection("losses", regularizer(fc3_weights))
fc3_biases = tf.get_variable("bias", [2], initializer = tf.constant_initializer(0.1))
logit = tf.matmul(fc2, fc3_weights) + fc3_biases
return logit
regularizer = tf.contrib.layers.l2_regularizer(0.0001)
logits = inference(x, False, regularizer)
#将logits乘以1赋值给logits_eval, 定义name
b = tf.constant(value = 1, dtype = tf.float32)
logits_eval = tf.multiply(logits, b, name = "logits_eval")
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits = logits, labels = y_)
train_op = tf.train.AdamOptimizer(learning_rate = 0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits, 1), tf.int32), y_)
acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
train_acc_graph = tf.summary.scalar('train_acc_graph', acc)
#train_loss_graph = tf.summary.scalar('train_loss_graph', loss)
#按批次取数据
def minibatches(inputs = None, targets = None, batch_size = None, shuffle = False):
assert len(inputs) == len(targets)
if shuffle:
indices = np.arange(len(inputs))
np.random.shuffle(indices)
for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):
if shuffle:
excerpt = indices[start_idx:start_idx + batch_size]
else:
excerpt = slice(start_idx, start_idx + batch_size)
yield inputs[excerpt], targets[excerpt]
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean', mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev', stddev)
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min', tf.reduce_min(var))
tf.summary.histogram('histogram', var)
#训练和测试数据
n_epoch = 50
batch_size = 16
saver = tf.train.Saver()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
train_writer = tf.summary.FileWriter(log_dir, sess.graph)
for epoch in range(n_epoch):
start_time = time.time()
#training
train_loss, train_acc, n_batch = 0, 0, 0
for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle = True):
_, err, ac, acc_graph = sess.run([train_op, loss, acc, train_acc_graph], feed_dict = {x: x_train_a, y_: y_train_a})
train_loss += err; train_acc += ac; n_batch +=1
print("the epoch value is {0}, train loss: {1}".format(epoch, (np.sum(train_loss) / n_batch)))
print("the epoch value is {0}, train acc: {1}".format(epoch, (np.sum(train_acc) / n_batch)))
train_writer.add_summary(acc_graph, epoch)
#validation
val_loss, val_acc, n_batch = 0, 0, 0
for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle = False):
err, ac, acc_graph = sess.run([loss, acc, train_acc_graph], feed_dict = {x: x_val_a, y_: y_val_a})
val_loss += err; val_acc += ac; n_batch += 1
print("the epoch value is {0}, validation loss: {1}".format(epoch, (np.sum(val_loss) / n_batch)))
print("the epoch value is {0}, validation acc: {1}".format(epoch, (np.sum(val_acc) / n_batch)))
train_writer.add_summary(acc_graph, epoch)
saver.save(sess, model_path, )
sess.close()
#! /usr/bin/python
# -*- coding:utf-8 -*-
from skimage import io,transform
import tensorflow as tf
import numpy as np
path1 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/Abyssinian_220.jpg"
path2 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/american_bulldog_217.jpg"
path3 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/basset_hound_194.jpg"
path4 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/beagle_195.jpg"
path5 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/Bengal_194.jpg"
path6 = "/home/muyangren/projectdir/tensorflow/PetTf/test_model_photos/Birman_197.jpg"
#pet_dict = {0:'Abyssinian',1:'american_bulldog',2:'basset_hound',3:'beagle',4:'Bengal',5:'Birman'}
pet_dict = {0:'dog',1:'cat'}
w=227
h=227
c=3
def read_one_image(path):
img = io.imread(path)
img = transform.resize(img,(w,h))
return np.asarray(img)
with tf.Session() as sess:
data = []
data1 = read_one_image(path1)
print(data1)
data2 = read_one_image(path2)
data3 = read_one_image(path3)
data4 = read_one_image(path4)
data5 = read_one_image(path5)
data6 = read_one_image(path6)
data.append(data1)
data.append(data2)
data.append(data3)
data.append(data4)
data.append(data5)
data.append(data6)
saver = tf.train.import_meta_graph('/home/muyangren/projectdir/tensorflow/PetTf/pet_models.meta')
saver.restore(sess,tf.train.latest_checkpoint('/home/muyangren/projectdir/tensorflow/PetTf/'))
graph = tf.get_default_graph()
x = graph.get_tensor_by_name("x:0")
feed_dict = {x:data}
logits = graph.get_tensor_by_name("logits_eval:0")
classification_result = sess.run(logits,feed_dict)
#打印出预测矩阵
print(classification_result)
#打印出预测矩阵每一行最大值的索引
print(tf.argmax(classification_result,1).eval())
#根据索引通过字典对应分类
output = []
output = tf.argmax(classification_result,1).eval()
for i in range(len(output)):
print("the ",i+1," pet is "+pet_dict[output[i]])
最后
以上就是淡然溪流为你收集整理的TensorFlow--AlexNet实现的全部内容,希望文章能够帮你解决TensorFlow--AlexNet实现所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复