概述
A. 牛牛的 Fib 序列
题目描述
牛牛重新定义了斐波那契数列,牛牛定义 f ( n ) = f ( n − 1 ) + f ( n + 1 ) , f ( 1 ) = a , f ( 2 ) = b f(n) = f(n-1) + f(n+1), f(1) = a, f(2) = b f(n)=f(n−1)+f(n+1),f(1)=a,f(2)=b,现在给定初始值 a , b a, b a,b,现在求第 n n n 项 f ( n ) m o d 1000000007 f(n) mod 1000000007 f(n)mod1000000007 的值。
其中 1 ≤ ∣ a ∣ , ∣ b ∣ , n ≤ 1 0 9 1 le |a|, |b|, n le 10^9 1≤∣a∣,∣b∣,n≤109
输入
a,b,n
输出
f(n) % 1000000007
备注:
最终的答案应是一个非负整数,如 -1 % 1000000007 = 1000000006
示例1
输入
1, 2, 3
输出
1
说明
f(2) = f(3) + f(1), 所以 f(3) = f(2) - f(1) = 2 - 1 = 1
示例2
输入
-1, -2, 3
输出
1000000006
说明
同例1:f(3)= -1 % 1000000007 = 1000000006
解法
思路分析
手写一下前几个数,就会发现这个数列 6 个数一循环。
时间复杂度:O(1)
空间复杂度:O(1)
代码实现
public int solve (int a, int b, int n) {
final int mod = 1000000007;
int[] fib = new int[]{a, b, (b - a) % mod, -a, -b, (a - b) % mod};
return (fib[(n - 1) % 6] + mod) % mod ;
}
B. 破译密码
题目描述
题面:
牛牛收到了一个任务,任务要求牛牛破译一个密码。牛牛将被给予两个字符串 s1 和 s2,均由四个小写字母构成。需要破译的密码为从s1 变换到 s2 最少需要的变换次数。
变换的方式是这样:每次变换可以选择当前字符串中的一个位置,然后剩下的三个位置的字符从左到右分别加上 2,3,5,若是超出 ‘z’,则重新从 ‘a’ 开始,例如:对于字符串 “abcd”,我们选择 ‘c’ 的位置进行变换,则变换之后的字符串为 “ceci”; 对于字符串 “qyzr”, 我们选择 ‘r’ 位置进行变换,则变换之后的字符串为 “sber”。
输入
s1, s2
输出
s1 变换到 s2 最少需要的变换次数
备注:
s1, s2 均由四个小写字母组成
示例1
输入
"aaaa", "ccgk"
输出
2
说明
第一次变换选择第一个'a',变成 "acdf",第二次变换选择第二个 'c',变成 "ccgk",故答案为2
解法一:BFS
思路分析
在之前的文章中,【魔法数字】一题也用到了 BFS。本题和那题的思路一致。穷举所有变换的可能性,通过备忘录剪枝来减少搜索空间。
对每一个字符串都有四种变换情况,即选择第 i i i 位 ( 0 ≤ i ≤ 3 ) (0 le i le 3) (0≤i≤3) 进行变换。
这里可以自行画一下四叉树,更能直观的体会这种方法的流程。(才不是因为我懒得画图,【逃】)
第一次变换到 s2 的那一层 j,即为最少变换次数。(根节点 s1 所在层为 0)
时间复杂度: O ( l o g 4 2 6 4 ) O(log_426^4) O(log4264). 最坏情况下把所有字符串 ( 2 6 4 26^4 264 个) 都搜索了一遍。
空间复杂度: O ( 2 6 4 ) O(26^4) O(264). 额外空间主要是备忘录和队列的空间开销,最坏情况下把所有字符串都存进去了。
代码实现
int[] add = new int[] {2,3,5};
public int solve(String s1, String s2) {
Set<String> visited = new HashSet();
Queue<String> q = new LinkedList();
q.offer(s1);
int res = 0;
while(!q.isEmpty()) {
int size = q.size();
while(size-- > 0) {
String cur = q.poll();
if(cur.equals(s2)) return res;
if(visited.contains(cur)) continue;
visited.add(cur);
for(int i = 0; i < 4; i++) q.offer(convert(cur,i));
}
res++;
}
return res;
}
public String convert(String s, int i) {
char[] str = s.toCharArray();
int index = 0;
for(int j = 0; j < 4; j++) {
if(j == i) continue;
str[j] = (char)('a' + (str[j] - 'a' + add[index]) % 26);
index++;
}
return String.valueOf(str);
}
解法二:数学方法
思路分析
因为 s1 到 s2 的距离为固定值,因此可以用数组 dis[4] 记录四位字符分别的距离。
记 a, b, c, d 分别为选择第 i (0 <= i <= 3) 位字符的次数。以下四个公式成立,即可说明这种情况下可以从 s1 变换到 s2:
2 ∗ ( b + c + d ) m o d 26 = d i s [ 0 ] 2 * (b + c + d) mod 26 = dis[0] 2∗(b+c+d)mod26=dis[0]
( 2 ∗ a + 3 ∗ ( c + d ) ) m o d 26 = d i s [ 1 ] (2 * a + 3* (c + d)) mod 26 = dis[1] (2∗a+3∗(c+d))mod26=dis[1]
( 3 ∗ ( a + b ) + 5 ∗ d ) m o d 26 = d i s [ 2 ] (3 * (a + b) + 5 * d) mod 26 = dis[2] (3∗(a+b)+5∗d)mod26=dis[2]
5 ∗ ( a + b + c ) m o d 26 = d i s [ 3 ] 5 * (a + b + c) mod 26 = dis[3] 5∗(a+b+c)mod26=dis[3]
所需变换次数为 c n t = a + b + c + d cnt = a + b + c + d cnt=a+b+c+d,取其中结果最小的即可。
代码实现
public int solve (String s1, String s2) {
int[] dis = new int[4];
for(int i = 0; i < 4; i++) dis[i] = (s2.charAt(i) - s1.charAt(i) + 26) % 26;
int res = 26 * 4;
for(int a = 0; a < 26; a++)
for(int b = 0; b < 26; b++)
for(int c = 0; c < 26; c++)
for(int d = 0; d < 26; d++)
if(dis[0] == 2 * (b + c + d) % 26 && dis[1] == (2 * a + 3* (c + d)) % 26 && dis[2] == (3 * (a + b) + 5 * d) % 26 && dis[3] == 5 * (a + b + c) % 26)
res = Math.min(res, a + b + c + d);
return res;
}
C. 卡牌问题
问题描述
有 n ∗ m n * m n∗m 张牌叠在一起,称之为旧牌库。
牌由旧牌库底部的第一张从 1 开始编号,旧牌库顶的牌编号就是 n ∗ m n*m n∗m.
每张牌上有一个数字,设编号为 i i i 的牌上的数字为 a [ i ] a[i] a[i], 保证满足 a [ i ] = ( ( i − 1 ) m o d m ) + 1 a[i] = ((i - 1 ) mod m) + 1 a[i]=((i−1)modm)+1。
现给出 a a a 和 b b b,进行两个操作:
1、每次将旧牌库最底下的一张牌拿出来,放到旧牌库顶,重复 a a a 次。
2、建一个新牌库,初始新牌库没有卡牌,每次先将旧牌库最底下的牌拿出来,放在新牌库顶,再将旧牌库最顶上的牌拿出来,放到新牌库顶,重复 b b b 次,保证 2 ∗ b ≤ n ∗ m 2*b le n*m 2∗b≤n∗m,最后将旧牌库所有剩余卡牌直接放到新牌库顶。
再给出数字 x x x 和 y y y,求新牌库从牌库底起第 x x x 张牌到第 y y y 张牌上的数字之和。
这个答案可能很大,输出答案对 998244353 取模后的结果。
备注:
输入包含 6 个整数 n, m, a, b, x, y,且保证数据一定合法可行。
输出一行,一个整数。
n <= 1e9; m <= 1e5; a <= n * m; b * 2 <= n * m; x <= y <= n * m
示例1
输入
4, 5, 17, 6, 3, 14
输出
39
示例2
输入
2, 3, 4, 1, 2, 5
输出
7
解法:前缀和
思路分析
乍看本题的小伙伴可能一头雾水,待本汪花 3 分钟细细讲解之后,小学生也能做出来!
咱们先分析新牌堆是什么样的,知道它长啥样,之后的计算思路就一目了然了。
依题意,原牌堆自底向上看牌上数字是这样一个序列: ( 1 , 2 , … , m ) n (1, 2, …, m)^n (1,2,…,m)n。
经过操作 1 之后,变成了牌堆 A ,序列为: s 1 , s 1 + 1 , … , m , ( 1 , 2 , … , m ) n − 1 , 1 , 2 , … , s 1 − 1 s_1, s_1 + 1, …, m, (1, 2, …, m)^{n-1}, 1, 2, …, s_1-1 s1,s1+1,…,m,(1,2,…,m)n−1,1,2,…,s1−1。其中 s 1 = a m o d m + 1 s_1 = a mod m + 1 s1=amodm+1。
对牌堆 A 进行操作 2 之后,得到新牌堆。新牌堆可分成两个序列: B 1 , B 2 B_1,B_2 B1,B2。
首先看 B 1 B_1 B1,它包含了 2 b 2b 2b 张牌,并且奇数牌和偶数牌的规律如下:
- 奇数牌:自底向上的第 2 k − 1 2k - 1 2k−1 张牌,对应牌堆 A 自底向上的第 k k k 张牌。
- 偶数牌:自底向上的第 2 k 2k 2k 张牌,对应牌堆 A 自顶向下的第 k k k 张牌。
B 2 B_2 B2 就很简单了,序列为: s 2 , s 2 + 1 , … , m , 1 , 2 , … , m , 1 , 2 , … s_2, s_2 + 1, …, m, 1, 2, …, m, 1, 2, … s2,s2+1,…,m,1,2,…,m,1,2,…。其中 s 2 = ( s 1 − 1 + b ) m o d m + 1 s_2 = (s_1 - 1 + b) mod m + 1 s2=(s1−1+b)modm+1。
现在知道新牌堆长什么样了,很显然 B 2 B_2 B2 的部分和是很好计算的。
B
1
B_1
B1 相当于牌堆 A 前向和后向各数了 b 张牌。因此用前缀和
+ 后缀和
便可以计算出
B
1
B_1
B1 的部分和。
到这里,熟悉 前缀和
的小伙伴就可以自己动手写代码体验 AC 的快感了。不熟悉 前缀和
的小伙伴也别担心,贴心的往西汪只用 1 分钟就能给你讲的明明白白。
给定参数 s t , l st, l st,l ,分别代表序列的初始数字,和序列的长度。
- 前缀和,计算序列 s t , s t + 1 , … , m , 1 , 2 , … , m , 1 , 2 , … st, st + 1, …, m, 1, 2, …, m, 1, 2, … st,st+1,…,m,1,2, …,m,1,2,… 的和。
- 后缀和,计算序列 s t , s t − 1 , … , 1 , m , m − 1 , … , 1 , m , m − 1 , … st, st − 1, …, 1, m, m−1, …, 1, m, m−1, … st,st−1,…,1,m,m−1,…,1,m,m−1,… 的和。
针对序列 B 1 B_1 B1,记 s u m ( x ) sum(x) sum(x) 表示区间 [ 1 , x ] [1, x] [1,x] 的牌的数字和, s u m ( x ) = 前 缀 和 ( s t = s 1 , l = ⌈ r / 2 ⌉ ) + 后 缀 和 ( s t = s 1 − 1 , l = ⌊ r / 2 ⌋ ) sum(x) = 前缀和(st = s_1, l = ⌈r/2⌉) + 后缀和(st = s_1 - 1, l = ⌊r/2⌋) sum(x)=前缀和(st=s1,l=⌈r/2⌉)+后缀和(st=s1−1,l=⌊r/2⌋) 。
区间 [ x 1 , x 2 ] [x_1, x_2] [x1,x2] 的和为: s u m ( x 2 ) − s u m ( x 1 − 1 ) sum(x_2) - sum(x_1 - 1) sum(x2)−sum(x1−1)。
至此本题再无难度。
代码实现
class Solution {
long m;
final long mod = 998244353;
public long work (long n, long m, long a, long b, long x, long y) {
this.m = m;
long res = 0;
long s1 = a % m + 1, s2 = (s1 - 1 + b) % m + 1;
if(x <= 2 * b){
res = modAdd(res, mod - b1Sum(s1, x - 1));
res = modAdd(res, b1Sum(s1, Math.min(2 * b, y)));
}
if(y > 2 * b){
res = modAdd(res, mod - b2Sum(s2, Math.max(2 * b, x - 1) - 2 * b));
res = modAdd(res, b2Sum(s2, y - 2 * b));
}
return res;
}
public long addTo(long l, long r){//计算[l, r]的区间和
if(r < l) return 0;
return ((l + r) * (r - l + 1) >> 1) % mod;
}
public long modAdd(long n1, long n2){
return (n1 + n2) < mod ? (n1 + n2) : (n1 + n2 - mod);
}
public long preSum(long st, long l){//这里的 l 表示序列长度
if(l <= 0) return 0;
if(l <= m - st + 1) return addTo(st, st + l - 1);
long k = (l - (m - st + 1)) / m;
long end = (l - (m - st + 1)) % m;
long res = modAdd(addTo(st, m), addTo(1, end));
return modAdd(res, (k * addTo(1, m)) % mod);
}
public long backSum(long st, long l){
if(l <= 0) return 0;
if(l <= st) return addTo(st - l + 1, st);
long k = (l - st) / m;
long end = m - ((l - st) % m) + 1;
long res = modAdd(addTo(1, st), addTo(end, m));
return modAdd(res, (k * addTo(1, m)) % mod);
}
public long b1Sum(long s1, long l){// l 表示序列长度
if(l <= 0) return 0;
long half = l >> 1;
return modAdd(preSum(s1, l - half), backSum(s1 - 1, half));
}
public long b2Sum(long s2, long l){
if(l <= 0) return 0;
return preSum(s2, l);
}
}
写在最后
大家好,我是往西汪,一位坚持原创的新人博主。
如果本文对你有帮助,请点赞、评论二连。你的支持是我创作路上的最大动力。
谢谢大家!
也欢迎来公众号【往西汪】找我玩耍~
最后
以上就是义气冰棍为你收集整理的算法题解 - 牛客编程巅峰赛S1第2场 - 黄金&钻石组A. 牛牛的 Fib 序列B. 破译密码C. 卡牌问题写在最后的全部内容,希望文章能够帮你解决算法题解 - 牛客编程巅峰赛S1第2场 - 黄金&钻石组A. 牛牛的 Fib 序列B. 破译密码C. 卡牌问题写在最后所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复