我是靠谱客的博主 含糊舞蹈,最近开发中收集的这篇文章主要介绍课程练习三-1009-problem I,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. <br><center><img src=../../../data/images/C154-1005-1.jpg> </center><br>&nbsp;&nbsp;Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2<sup>L</sup> numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.<br>Your task is to calculate the number of E-queues mod M with length L by writing a program.<br>
 

Input
Input a length L (0 <= L <= 10 <sup>6</sup>) and M.
 

Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 

Sample Input
  
  
3 8 4 7 4 8
 

Sample Output
  
  
6 2

1

题意:这个怎么说,就是找 递推公式,计算呗!

思路:

矩阵快速幂(可以先拿Fibonacci数列试手,网上有Fibonacci数列快速幂的解析,自己查)

主要是找递推公式,

f(n)=f(n-1)+g;

f(n)=f(n-1)+f(n-3)+g';

f(n)=f(n-1)+f(n-3)+f(n-4);

SO f(n)=f(n-1)+f(n-3)+f(n-4)位最后的公式。

剩下的基本套模板就行了。

AC代码:

#include<iostream>   #include<algorithm>   #include<stdlib.h> #define INF 99999999   using namespace std; const int MAX = 4; int array[MAX][MAX], sum[MAX][MAX]; void MatrixMult(int a[MAX][MAX], int b[MAX][MAX], int &mod){ int c[MAX][MAX] = { 0 }; for (int i = 0; i<MAX; ++i){ for (int j = 0; j<MAX; ++j){ for (int k = 0; k<MAX; ++k){ c[i][j] += a[i][k] * b[k][j]; } } } for (int i = 0; i<MAX; ++i){ for (int j = 0; j<MAX; ++j)a[i][j] = c[i][j] % mod; } } int MatrixPow(int k, int &mod){ for (int i = 0; i<MAX; ++i){ for (int j = 0; j<MAX; ++j)sum[i][j] = (i == j); } array[0][0] = array[0][1] = array[0][2] = 0, array[0][3] = 1; array[1][1] = array[1][2] = 0, array[1][0] = array[1][3] = 1; array[2][0] = array[2][3] = 0, array[2][1] = array[2][2] = 1; array[3][0] = array[3][1] = array[3][3] = 0, array[3][2] = 1; while (k){ if (k & 1)MatrixMult(sum, array, mod); MatrixMult(array, array, mod); k >>= 1; } int ans = 0; for (int i = 0; i<MAX; ++i)ans = (ans + sum[i][0] + sum[i][1] + sum[i][2] + sum[i][3]) % mod; return ans; } int main(){ int n, m; while (cin >> n >> m){ if (n == 0)cout << 0 << endl; else if (n == 1)cout << 2 % m << endl; else if (n == 2)cout << 4 % m << endl; else{ cout << MatrixPow(n - 2, m) << endl; } } system("pause"); return 0; }

感想:很长时间没复习快速幂了,这次复习一下。

最后

以上就是含糊舞蹈为你收集整理的课程练习三-1009-problem I的全部内容,希望文章能够帮你解决课程练习三-1009-problem I所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部