概述
import torch
from d2l import torch as d2l
from torch import nn
# 卷积层个数 输入通道个数 输出通道个数
def vgg_block(num_convs,in_channels,out_channels):
layars=[]
for _ in range(num_convs):
layars.append(nn.Conv2d(in_channels,out_channels,kernel_size=3,padding=1))
layars.append(nn.ReLU())
in_channels = out_channels
layars.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layars)
conv_arch = ((1,64),(1,128),(2,256),(2,512),(2,512))
def vgg(conv_arch):
conv_blks=[]
in_channels = 1
# 卷积层部分
for (num_convs, out_channels) in conv_arch:
conv_blks.append(vgg_block(num_convs, in_channels, out_channels))
in_channels = out_channels
return nn.Sequential(
*conv_blks, nn.Flatten(),
# 全连接层部分
nn.Linear(out_channels * 7 * 7, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 4096), nn.ReLU(), nn.Dropout(0.5),
nn.Linear(4096, 10))
net = vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape:t',X.shape)
# 由于VGG-11比AlexNet计算量更大,因此构建一个通道数较少的网络
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
最后
以上就是大意跳跳糖为你收集整理的李沐笔记(使用块的网络VGG)的全部内容,希望文章能够帮你解决李沐笔记(使用块的网络VGG)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复