我是靠谱客的博主 陶醉帆布鞋,最近开发中收集的这篇文章主要介绍解决JavaScript数字精度丢失问题的方法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章转自:https://www.jb51.net/article/75801.htm

这篇文章主要介绍了解决JavaScript数字精度丢失问题的方法,需要的朋友可以参考下

本文分为三个部分

  • JS 数字精度丢失的一些典型问题
  • JS 数字精度丢失的原因
  • 解决方案(一个对象+一个函数)

一、JS数字精度丢失的一些典型问题

1. 两个简单的浮点数相加

1

0.1 + 0.2 != 0.3 // true

这真不是 Firebug 的问题,可以用alert试试 (哈哈开玩笑)。

看看Java的运算结果

再看看Python

 

2. 大整数运算

16位和17位数竟然相等,没天理啊。

又如

1

2

var x = 9007199254740992

x + 1 == x // ?

看结果

三观又被颠覆了。

3. toFixed 不会四舍五入(Chrome)

线上曾经发生过 Chrome 中价格和其它浏览器不一致

二、JS 数字丢失精度的原因

计算机的二进制实现和位数限制有些数无法有限表示。就像一些无理数不能有限表示,如 圆周率 3.1415926...,1.3333... 等。JS 遵循 IEEE 754 规范,采用双精度存储(double precision),占用 64 bit。如图

 

意义

  • 1位用来表示符号位
  • 11位用来表示指数
  • 52位表示尾数

浮点数,比如

1

2

0.1 >> 0.0001 1001 1001 1001…(1001无限循环)

0.2 >> 0.0011 0011 0011 0011…(0011无限循环)

此时只能模仿十进制进行四舍五入了,但是二进制只有 0 和 1 两个,于是变为 0 舍 1 入。这即是计算机中部分浮点数运算时出现误差,丢失精度的根本原因。

大整数的精度丢失和浮点数本质上是一样的,尾数位最大是52位,因此 JS 中能精准表示的最大整数是 Math.pow(2, 53),十进制即 9007199254740992。

大于 9007199254740992 的可能会丢失精度

1

2

3

9007199254740992  >> 10000000000000...000 // 共计 53 个 0

9007199254740992 + 1 >> 10000000000000...001 // 中间 52 个 0

9007199254740992 + 2 >> 10000000000000...010 // 中间 51 个 0

实际上

1

2

3

4

9007199254740992 + 1 // 丢失

9007199254740992 + 2 // 未丢失

9007199254740992 + 3 // 丢失

9007199254740992 + 4 // 未丢失

结果如图

 

以上,可以知道看似有穷的数字, 在计算机的二进制表示里却是无穷的,由于存储位数限制因此存在“舍去”,精度丢失就发生了。

三、解决方案

对于整数,前端出现问题的几率可能比较低,毕竟很少有业务需要需要用到超大整数,只要运算结果不超过 Math.pow(2, 53) 就不会丢失精度。

对于小数,前端出现问题的几率还是很多的,尤其在一些电商网站涉及到金额等数据。解决方式:把小数放到位整数(乘倍数),再缩小回原来倍数(除倍数)

1

2

// 0.1 + 0.2

(0.1*10 + 0.2*10) / 10 == 0.3 // true

以下是我写了一个对象,对小数的加减乘除运算丢失精度做了屏蔽。当然转换后的整数依然不能超过 9007199254740992。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

/**

 * floatObj 包含加减乘除四个方法,能确保浮点数运算不丢失精度

 *

 * 我们知道计算机编程语言里浮点数计算会存在精度丢失问题(或称舍入误差),其根本原因是二进制和实现位数限制有些数无法有限表示

 * 以下是十进制小数对应的二进制表示

 *  0.1 >> 0.0001 1001 1001 1001…(1001无限循环)

 *  0.2 >> 0.0011 0011 0011 0011…(0011无限循环)

 * 计算机里每种数据类型的存储是一个有限宽度,比如 JavaScript 使用 64 位存储数字类型,因此超出的会舍去。舍去的部分就是精度丢失的部分。

 *

 * ** method **

 * add / subtract / multiply /divide

 *

 * ** explame **

 * 0.1 + 0.2 == 0.30000000000000004 (多了 0.00000000000004)

 * 0.2 + 0.4 == 0.6000000000000001 (多了 0.0000000000001)

 * 19.9 * 100 == 1989.9999999999998 (少了 0.0000000000002)

 *

 * floatObj.add(0.1, 0.2) >> 0.3

 * floatObj.multiply(19.9, 100) >> 1990

 *

 */

var floatObj = function() {

  

 /*

  * 判断obj是否为一个整数

  */

 function isInteger(obj) {

  return Math.floor(obj) === obj

 }

  

 /*

  * 将一个浮点数转成整数,返回整数和倍数。如 3.14 >> 314,倍数是 100

  * @param floatNum {number} 小数

  * @return {object}

  * {times:100, num: 314}

  */

 function toInteger(floatNum) {

  var ret = {times: 0, num: 0}

  if (isInteger(floatNum)) {

   ret.num = floatNum

   return ret

  }

  var strfi = floatNum + ''

  var dotPos = strfi.indexOf('.')

  var len = strfi.substr(dotPos+1).length

  var times = Math.pow(10, len)

  var intNum = parseInt(floatNum * times + 0.5, 10)

  ret.times = times

  ret.num = intNum

  return ret

 }

  

 /*

  * 核心方法,实现加减乘除运算,确保不丢失精度

  * 思路:把小数放大为整数(乘),进行算术运算,再缩小为小数(除)

  *

  * @param a {number} 运算数1

  * @param b {number} 运算数2

  * @param digits {number} 精度,保留的小数点数,比如 2, 即保留为两位小数

  * @param op {string} 运算类型,有加减乘除(add/subtract/multiply/divide)

  *

  */

 function operation(a, b, digits, op) {

  var o1 = toInteger(a)

  var o2 = toInteger(b)

  var max = o1.times > o2.times ? o1.times : o2.times

  var result = null

  switch (op) {

   case 'add':

    result = o1.num + o2.num

    break

   case 'subtract':

    result = o1.num - o2.num

    break

   case 'multiply':

    result = o1.num * o2.num

    break

   case 'divide':

    result = o1.num / o2.num

    break

  }

  return result / max

 }

  

 // 加减乘除的四个接口

 function add(a, b, digits) {

  return operation(a, b, digits, 'add')

 }

 function subtract(a, b, digits) {

  return operation(a, b, digits, 'subtract')

 }

 function multiply(a, b, digits) {

  return operation(a, b, digits, 'multiply')

 }

 function divide(a, b, digits) {

  return operation(a, b, digits, 'divide')

 }

  

 // exports

 return {

  add: add,

  subtract: subtract,

  multiply: multiply,

  divide: divide

 }

  

}();

 

toFixed的修复如下

1

2

3

4

5

6

7

// toFixed 修复

function toFixed(num, s) {

 var times = Math.pow(10, s)

 var des = num * times + 0.5

 des = parseInt(des, 10) / times

 return des + ''

}

以上就是关于JavaScript数字精度丢失问题全部内容,对典型问题进行分析,分析数字精度丢失原因,还分享了解决方案,希望对大家的学习有所帮助。

最后

以上就是陶醉帆布鞋为你收集整理的解决JavaScript数字精度丢失问题的方法的全部内容,希望文章能够帮你解决解决JavaScript数字精度丢失问题的方法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(63)

评论列表共有 0 条评论

立即
投稿
返回
顶部