我是靠谱客的博主 坦率月饼,最近开发中收集的这篇文章主要介绍PaddleDetection算法分析(3)2021SC@SDUSC,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

2021SC@SDUSC

YOLOv3的目标检测源代码,核心的函数包括:

detect_image()

generate()

yolo_eval()

yolo_model()

yolo_boxes_and_scores()

yolo_head()

yolo_correct_boxes()

1.算法代码


yolo.py




class YOLO(object):
 
    _defaults = {
 
        "model_path": 'model_data/yolo.h5', #已经训练好的模型
 
        "anchors_path": 'model_data/yolo_anchors.txt', #通过聚类算法得到的3组9个anchor box,分别用于13x13、26x26、52x52的feature map
 
        "classes_path": 'model_data/coco_classes.txt', #可识别的COCO类别列表,一共80个
 
        "score" : 0.3, #框置信度阈值阈值,小于阈值则目标框被抛弃
 
        "iou" : 0.45, #IOU(Intersection over Union)阈值,大于阈值的重叠框被删除
 
        "model_image_size" : (416, 416), #输入图片的“标准尺寸”,不同于这个尺寸的输入会首先调整到标准大小
 
        "gpu_num" : 1, #GPU数量,通常是指Nvidia的GPU
 
    }
 
 
    def __init__(self, **kwargs):
 
        self.__dict__.update(self._defaults) # set up default values
 
        self.__dict__.update(kwargs) # and update with user overrides
 
        self.class_names = self._get_class()
 
        self.anchors = self._get_anchors()
 
        self.sess = K.get_session()
 
        self.boxes, self.scores, self.classes = self.generate() #由generate()函数完成目标检测
 
 
    def generate(self):
 
        #读取:model路径、anchor box、coco类别,加载模型yolo.h5
 
        model_path = os.path.expanduser(self.model_path)
 
        assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
 
 
        # Load model, or construct model and load weights.
 
        num_anchors = len(self.anchors)
 
        num_classes = len(self.class_names)
 
        is_tiny_version = num_anchors==6 # default setting
 
        try:
 
            self.yolo_model = load_model(model_path, compile=False)
 
        except:
 
            self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) 
 
                if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
 
            self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
 
        else:
 
            assert self.yolo_model.layers[-1].output_shape[-1] == 
 
                num_anchors/len(self.yolo_model.output) * (num_classes + 5), 
 
                'Mismatch between model and given anchor and class sizes'
 
 
        print('{} model, anchors, and classes loaded.'.format(model_path))
 
 
        # Generate colors for drawing bounding boxes.
 
        #对于80种coco目标,确定每一种目标框的绘制颜色,即:将(x/80, 1.0, 1.0)的颜色转换为RGB格式,并随机调整颜色以便于肉眼识别,其中:一个1.0表示饱和度,一个1.0表示亮度
 
        hsv_tuples = [(x / len(self.class_names), 1., 1.)
 
                      for x in range(len(self.class_names))]
 
        self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
 
        self.colors = list(
 
            map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
 
                self.colors))
 
        np.random.seed(10101)  # Fixed seed for consistent colors across runs.
 
        np.random.shuffle(self.colors)  # Shuffle colors to decorrelate adjacent classes.
 
        np.random.seed(None)  # Reset seed to default.
 
 
        # Generate output tensor targets for filtered bounding boxes.
 
        self.input_image_shape = K.placeholder(shape=(2, ))
 
        #若GPU个数大于等于2,调用multi_gpu_model()
 
        if self.gpu_num>=2:
 
            self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
 
        boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
 
                len(self.class_names), self.input_image_shape,
 
                score_threshold=self.score, iou_threshold=self.iou)
 
        return boxes, scores, classes
 
 
    def detect_image(self, image):
 
        #开始计时
        start = timer()
 
        #调用letterbox_image()函数,即:先生成一个用“绝对灰”R128-G128-B128“填充的416x416新图片,然后用按比例缩放(采样方法:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色
 
        if self.model_image_size != (None, None):
 
            assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
 
            assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
 
            boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
 
        else:
 
            #model_image_size定义的宽和高必须是32的整倍数;若没有定义model_image_size,将输入图片的尺寸调整到32的整倍数,并调用letterbox_image()函数进行缩放
 
            new_image_size = (image.width - (image.width % 32),
 
                              image.height - (image.height % 32))
 
            boxed_image = letterbox_image(image, new_image_size)
 
        image_data = np.array(boxed_image, dtype='float32')
 
 
        print(image_data.shape)
 
        image_data /= 255. #将缩放后图片的数值除以255,做归一化
 
        #将(416,416,3)数组调整为(1,416,416,3)元组,满足YOLOv3输入的张量格式
        image_data = np.expand_dims(image_data, 0)  # Add batch dimension.
 
 
        out_boxes, out_scores, out_classes = self.sess.run(
 
            [self.boxes, self.scores, self.classes],
 
            feed_dict={  #输入参数
 
                self.yolo_model.input: image_data, #输入图片
 
                self.input_image_shape: [image.size[1], image.size[0]], #图片尺寸416x416
 
                K.learning_phase(): 0 #学习模式:0测试/1训练
 
            })
 
 
        print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
 
        #设置字体
        font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
 
                    size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
        
        #设置目标框线条的宽度
        thickness = (image.size[0] + image.size[1]) // 300
 
 
        #对于c个目标类别中的每个目标框i,调用Pillow画图
        for i, c in reversed(list(enumerate(out_classes))):
 
            predicted_class = self.class_names[c]    #目标类别的名字
 
            box = out_boxes[i]        #目标框
 
            score = out_scores[i]     #目标框的置信度评分
 
 
            label = '{} {:.2f}'.format(predicted_class, score)
 
            draw = ImageDraw.Draw(image)  #输出:绘制输入的原始图片
 
            label_size = draw.textsize(label, font)    #返回label的宽和高(多少个pixels).
 
 
            top, left, bottom, right = box
            
            #目标框的上、左两个坐标小数点后一位四舍五入
            top = max(0, np.floor(top + 0.5).astype('int32'))
 
            left = max(0, np.floor(left + 0.5).astype('int32'))
 
            #目标框的下、右两个坐标小数点后一位四舍五入,与图片的尺寸相比,取最小值
            bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
 
            right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
 
            print(label, (left, top), (right, bottom))
 
 
            #确定标签(label)起始点位置:左、下
            if top - label_size[1] >= 0:
 
                text_origin = np.array([left, top - label_size[1]])
 
            else:
 
                text_origin = np.array([left, top + 1])
 
 
            # My kingdom for a good redistributable image drawing library.
            
            #画目标框,线条宽度为thickness
            for i in range(thickness):
 
                draw.rectangle(
 
                    [left + i, top + i, right - i, bottom - i],
 
                    outline=self.colors[c])
 
            #画标签框
            draw.rectangle(
 
                [tuple(text_origin), tuple(text_origin + label_size)],
 
                fill=self.colors[c])
 
            #填写标签内容
            draw.text(text_origin, label, fill=(0, 0, 0), font=font)
 
            del draw
 
        #结束计时
        end = timer()
 
        print(end - start)
 
        return image

yolo3model.py 



def yolo_head(feats, anchors, num_classes, input_shape, calc_loss=False):
 
    #feats,即:feature maps
 
    """Convert final layer features to bounding box parameters."""
 
    num_anchors = len(anchors) #num_anchors = 3
 
    # Reshape to batch, height, width, num_anchors, box_params.
 
    anchors_tensor = K.reshape(K.constant(anchors), [1, 1, 1, num_anchors, 2])
 
 
    grid_shape = K.shape(feats)[1:3] # height, width #13x13或26x26或52x52
 
    #通过arange、reshape、tile的组合,根据grid_shape(13x13、26x26或52x52)创建y轴的0~N-1的组合grid_y,再创建x轴的0~N-1的组合grid_x,将两者拼接concatenate,形成NxN的grid(13x13、26x26或52x52)
 
    grid_y = K.tile(K.reshape(K.arange(0, stop=grid_shape[0]), [-1, 1, 1, 1]),
 
        [1, grid_shape[1], 1, 1])
 
    grid_x = K.tile(K.reshape(K.arange(0, stop=grid_shape[1]), [1, -1, 1, 1]),
 
        [grid_shape[0], 1, 1, 1])
 
    grid = K.concatenate([grid_x, grid_y])
 
    grid = K.cast(grid, K.dtype(feats))
 
 
    #从待处理的feature map的最后一维数据中,先将num_anchors这个维度与num_classes+5这个维度的数据分离,再取出4个框值tx、ty(最后一维数据的0:1)、tw和th(最后一维数据的2:3)
 
    feats = K.reshape(
 
        feats, [-1, grid_shape[0], grid_shape[1], num_anchors, num_classes + 5])
 
 
    # Adjust preditions to each spatial grid point and anchor size.
 
    #用sigmoid()函数计算目标框的中心点box_xy,用exp()函数计算目标框的宽和高box_wh
    #使用特征图尺寸(如:13x13、26x26或52x52)在水平x、垂直y两个维度对box_xy进行归一化,确定目标框的中心点的相对位置
    #使用标准图片尺寸(416x416)在宽和高两个维度对box_wh(因为,3组9个anchor box是基于416x416尺寸定义的)进行归一化,确定目标框的高和宽的相对位置
 
    box_xy = (K.sigmoid(feats[..., :2]) + grid) / K.cast(grid_shape[::-1], K.dtype(feats))
 
    box_wh = K.exp(feats[..., 2:4]) * anchors_tensor / K.cast(input_shape[::-1], K.dtype(feats))
 
    #用sigmoid()函数计算目标框的置信度box_confidence
 
    box_confidence = K.sigmoid(feats[..., 4:5])
 
    #用sigmoid()函数计算目标框的类别置信度box_class_probs
 
    box_class_probs = K.sigmoid(feats[..., 5:])
 
 
    if calc_loss == True:
 
        return grid, feats, box_xy, box_wh
 
    return box_xy, box_wh, box_confidence, box_class_probs
 
 
def yolo_correct_boxes(box_xy, box_wh, input_shape, image_shape):
 
    '''Get corrected boxes'''
 
    #将box_xy, box_wh转换为输入图片上的真实坐标,输出boxes是框的左下、右上两个坐标(y_min, x_min, y_max, x_max)
 
    #np.array[i:j:s],当s<0时,i缺省时,默认为-1;j缺省时,默认为-len(a)-1;所以array[::-1]相当于array[-1:-len(a)-1:-1],也就是从最后一个元素到第一个元素复制一遍,即倒序
    box_yx = box_xy[..., ::-1]
 
    box_hw = box_wh[..., ::-1]
 
    input_shape = K.cast(input_shape, K.dtype(box_yx))
 
    image_shape = K.cast(image_shape, K.dtype(box_yx))
 
    new_shape = K.round(image_shape * K.min(input_shape/image_shape))
 
    offset = (input_shape-new_shape)/2./input_shape
 
    scale = input_shape/new_shape
 
    box_yx = (box_yx - offset) * scale
 
    box_hw *= scale
 
 
    box_mins = box_yx - (box_hw / 2.)
 
    box_maxes = box_yx + (box_hw / 2.)
 
    boxes =  K.concatenate([
 

yolo3utils.py

def letterbox_image(image, size):
 
'''resize image with unchanged aspect ratio using padding'''
 
#先生成一个用“绝对灰”R128-G128-B128“填充的416x416新图片,然后用按比例缩放(采样方法:BICUBIC)后的输入图片粘贴,粘贴不到的部分保留为灰色
 
    iw, ih = image.size
 
    w, h = size
 
    scale = min(w/iw, h/ih)
 
    nw = int(iw*scale)
 
    nh = int(ih*scale)
 
 
    image = image.resize((nw,nh), Image.BICUBIC)
 
    new_image = Image.new('RGB', size, (128,128,128))
 
    new_image.paste(image, ((w-nw)//2, (h-nh)//2))
 
    return new_image

(二)代码分析

YOLOv3的目标识别的源代码流程大致如下:

(1)设置缺省值并初始化:

 

 (2)detect_image()将图片缩放成416x416大小,调用yolo_model(),生成13x13、26x26与52x52等3个feature map的输出,对这3个feature map进行预测,调用yolo_eval()函数得到目标框、目标框得分和类别,然后使用Pillow对发现的每一类对象的每一个目标框,绘制标签、框和文字:

剩余部分下周讲解

最后

以上就是坦率月饼为你收集整理的PaddleDetection算法分析(3)2021SC@SDUSC的全部内容,希望文章能够帮你解决PaddleDetection算法分析(3)2021SC@SDUSC所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(54)

评论列表共有 0 条评论

立即
投稿
返回
顶部