我是靠谱客的博主 飞快人生,最近开发中收集的这篇文章主要介绍Matlab非线性方程求解,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

Matlab求解

  • 非线性方程求解

最近准备数学竞赛需要对Matlab重新进行一个系统的学习,于是将在学习中学到的东西以博客的形式记录一下,这里介绍的是Matlab中的非线性方程求解


  1. 概论

    对Matlab非线性方程求解的概括

    这里写图片描述

  2. 代码演示

    1. Matlab符号法

      1. fsolve

        这里写图片描述
        -x0 = [-5;-5];
        options = optimset('Display','iter');
        [x,fval] = fsolve(@myfunction,x0,options);
        %function F = myfunction(x)
        %F = [2*x(1)-x(2)-exp(-x(1));-x(1)+2*x(2)-exp(-x(2))];

      2. fzero

        这里写图片描述
        -x = fzero('x^4+5*x^2+3*x-20',-2);

      3. roots

        这里写图片描述
        -[x] = roots([1 0 5 3 -20]);

      4. solve

        这里写图片描述
        -%方程组
        a = 'x^2 + sqrt(5)*x = -1';
        b = 'x + 3*z^2 = 4';
        c = 'y*z + 1 = 0';
        [u,v,w] = solve(a,b,c);
        vpa(u,6)
        vpa(v,6)
        vpa(w,6)
        %方程
        [x] = solve('x^3-x-1=0');
        vpa(x,6)

    2. Newton法

      这里写图片描述
      -newton('f','df',1.2,10^(-6),10)

      这里的newton算法:

      -function [p1,err,k,y] = newton(f,df,p0,delta,max1)
      p0,feval(f,p0)
      for k = 1:max1
      p1 = p0 - feval(f,p0)/feval(df,p0);
      err = abs(p1 - p0);
      p0 = p1;
      p1,err,k,y = feval(f,p1)
      if(err<delta)|(y == 0)
      break
      end
      p1,err,k,y = feval(f,p1)
      end

      f函数:
      -function y = f(x)
      y = x^3 - 3*x + 2;

      df函数:
      -function y = df(x)
      y = 3*x^2 - 3;

    3. 迭代法

      迭代算法:
      -function [p0,k,err,p] = fixpt(g,p0,tol,max1)
      P(1) = p0;
      for k = 2:max1
      P(k) = feval(g,P(k-1));
      k,err = abs(P(k) - P(k-1))
      p = P(k);
      if (err < tol)
      break;
      end;
      if k == max1
      disp('maximum number of iteration exceeded');
      end
      end
      P

    4. 二分法

      这里写图片描述

      二分算法:

      -function [c,err,yc] = bisect(f,a,b,delta)
      if nargin < 4 delta = 1e-10;end
      ya = feval(f,a);
      yb = feval(f,b);
      if yb == 0
      c = b;
      return
      end
      if ya*yb>0
      disp('(a,b)不是有根区间');
      return
      end
      max1 = 1 + round((log(b-a)-log(delta))/log(2));
      for k = 1:max1
      c = (a+b)/2;
      yc = feval(f,c);
      if yc == 0
      a = c;
      b = c;
      break;
      elseif yb*yc > 0
      b = c;
      yb = yc;
      else
      a = c;
      ya = c;
      end
      if(b-a) < delta
      break
      end
      end
      k = (a+b)/2;
      c = (a+b)/2;
      err = abs(b-a);
      yc = feval(f,c);

    5. 弦位法

      这里写图片描述

      弦位算法:

      -function [p1,err,k,y] = secant(f,p0,p1,delta,max1)
      p0,p1,feval(f,p0),feval(f,p1),k=0,
      for k = 1:max1
      p2 = p1 - feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
      err = abs(p2 - p1);
      p0 = p1;
      p1 = p2;
      p1,err,k,y=feval(f,p1)
      if(err < delta) | (y == 0)
      break
      end
      end

代码下载地址:http://download.csdn.net/detail/qq_34861102/9922160
原文地址:http://blog.csdn.net/qq_34861102/article/details/76724026

最后

以上就是飞快人生为你收集整理的Matlab非线性方程求解的全部内容,希望文章能够帮你解决Matlab非线性方程求解所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(51)

评论列表共有 0 条评论

立即
投稿
返回
顶部