我是靠谱客的博主 沉静可乐,这篇文章主要介绍MATLAB利用图像比较收敛快慢,数值计算上机实习题目(matlab编程),现在分享给大家,希望可以做个参考。

非线性方程求根

一、实验目的

本次实验通过上机实习,了解迭代法求解非线性方程数值解的过程和步骤。

二、实验要求

1、用迭代法求方程230x x e -=的根。

要求:确定迭代函数?(x),使得x=?(x),并求一根。提示:构造迭代函数2ln(3)x ?=。

2、 对上面的方程用牛顿迭代计算。

3、 用割线法求方程3()310f x x x =--=在02x =附近的根。误差限为410-,取

012, 1.9x x ==。

三、实验内容

1、(1)首先编写迭代函数,记为iterate.m

function y=iterate(x)

x1=g(x); % x 为初始值。

n=1;

while(abs(x1-x)>=1.0e-6)&(n<=1000) % 迭代终止的原则。

x=x1;

x1=g(x);

n=n+1;

end

x1 %近似根

n %迭代步数

(2) 后编制函数文件?(x),记为g.m

function y=g(x)

y=log(3*x.^2);

(3)设初始值为0、3、-3、1000,观察初始值对求解的影响。将结果记录在文档中。

>>iterate(0)

>>iterate(3) 等等

2、(1)首先编制牛顿迭代函数如下,记为newton.m

最后

以上就是沉静可乐最近收集整理的关于MATLAB利用图像比较收敛快慢,数值计算上机实习题目(matlab编程)的全部内容,更多相关MATLAB利用图像比较收敛快慢内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(80)

评论列表共有 0 条评论

立即
投稿
返回
顶部