概述
代码的前半段基础是用的别人的,后面一半的改进是自己写的
%% 初始化
map=im2bw(imread('map2.bmp')); % bmp无损压缩图像500x500,im2bw把灰度图转换成二值图像01
source=[10 10]; % 起始点位置
goal=[490 490]; % 目标点位置
stepsize=20; % RRT每步步长
disTh=20; % 直到qnearest和目标点qgaol距离小于一个阈值
maxFailedAttempts = 10000; % 最大尝试次数
display=true; % RRT是否展示
%% %%%% 参数 %%%%%
tic; % 保存当前时间
if ~feasiblePoint(source,map), error('source lies on an obstacle or outside map'); end
if ~feasiblePoint(goal,map), error('goal lies on an obstacle or outside map'); end
if display, imshow(map);rectangle('position',[1 1 size(map)-1],'edgecolor','k'); end %展示图像,并创建带有尖角的矩形边框
RRTree=double([source -1]); % RRT 从起点开始(索引为-1),经过的结点和索引
failedAttempts=0; % 已经尝试失败的次数
counter=0; % 循环计数
pathFound=false; % 是否找到路径的flag
while failedAttempts<=maxFailedAttempts % RRT循环
if rand < 0.5
sample=rand(1,2) .* size(map); % 50%几率随机采点
else
sample=goal; % 50%几率向目标前进
end
% 每一个分支都会继续分支
[A, I]=min( distanceCost(RRTree(:,1:2),sample) ,[],1); % 发现结点和随机采样点最小距离的一行,并返回对应索引,[],1可以去掉
closestNode = RRTree(I,1:2); %树结点最近点坐标,最近点可能多个(1)不可取
theta=atan2(sample(1)-closestNode(1),sample(2)-closestNode(2)); % 产生新结点的方向
newPoint = double(int32(closestNode(1:2) + stepsize * [sin(theta) cos(theta)])); % 产生新结点,先计算纵坐标,再计算横坐标
if ~checkPath(closestNode(1:2), newPoint, map) % 检测最近结点到新结点的路径是否可行
failedAttempts=failedAttempts+1;
continue;
end
if distanceCost(newPoint,goal)<disTh, pathFound=true;break; end % 检测新结点是否到达目标点,即小于一定的阈值
[A, I2]=min( distanceCost(RRTree(:,1:2),newPoint) ,[],1); % 检测检点是否已经存在树结点中
if distanceCost(newPoint,RRTree(I2(1),1:2))<disTh, failedAttempts=failedAttempts+1;continue; end %如果新结点在树结点中,记失败一次
RRTree=[RRTree;newPoint I]; % 将新结点介入到如结点中
failedAttempts=0;
% 每扩展一个新结点,画一条线
if display,
line([closestNode(2);newPoint(2)],[closestNode(1);newPoint(1)]);
counter=counter+1;M(counter)=getframe;
end
end
% 补充最后一个新结点和终点的连线
if display && pathFound
line([closestNode(2);goal(2)],[closestNode(1);goal(1)]);
counter=counter+1;M(counter)=getframe;
end
if display
disp('click/press any key');
waitforbuttonpress;
end
if ~pathFound, error('no path found. maximum attempts reached'); end
%% 优化最终轨迹
path0=[goal];
prev0=I;
while prev0>0
path0=[RRTree(prev0,1:2);path0];
prev0=RRTree(prev0,3);
end %最初轨迹path0
path=[goal];
prev=I;
path=[RRTree(prev,1:2);path];
prev1=RRTree(prev,3);
prev=RRTree(prev1,3);
j=2;
while prev>2
path1=path;
path=[RRTree(prev,1:2);path];
if ~checkPath(path(j,1:2),path(j+1,1:2), map) % 检测新路径是否可行
path=path1;
path=[RRTree(prev1,1:2);path];
path=[RRTree(prev,1:2);path];
else
path=path;
end
prev=RRTree(prev,3);
prev=RRTree(prev,3);
prev1=RRTree(prev1,3);
prev1=RRTree(prev1,3);
j=j+1;
end
path=[RRTree(3,1:2);path];
path=[RRTree(2,1:2);path];
path=[source;path];
%尝试每两个节点合一之后轨迹path
path2=[j+3 2];
path2(1,1:2)=path(1,1:2);
m=1;
n=1;
while m<j+2
if ~checkPath(path(m,1:2),path(m+2,1:2), map)
path2(n+1,1:2)=path(m+1,1:2);
m=m+1;
else
path2(n+1,1:2)=path(m+2,1:2);
m=m+2;
end
n=n+1;
end
%在path基础上再次两两合一之后path2
path3=[n+3 2];
path3(1,1:2)=path2(1,1:2);
o=1;
p=1;
while o<n-1
if ~checkPath(path2(o,1:2),path2(o+2,1:2), map)
path3(p+1,1:2)=path2(o+1,1:2);
o=o+1;
else
path3(p+1,1:2)=path2(o+2,1:2);
o=o+2;
end
p=p+1;
end
path3(p+1,1:2)=goal;
%在path2基础上两两合一,path3
%% 显示时间和路径长度
pathLength=0;
pathLength1=0;
for i=1:length(path0)-1, pathLength = pathLength + distanceCost(path0(i,1:2),path0(i+1,1:2)); end % calculate path length
for k=1:length(path3)-1, pathLength1 = pathLength1 + distanceCost(path3(k,1:2),path3(k+1,1:2)); end % calculate path3 length
fprintf('processing time=%d nPath0 Length=%d nn Path3 Length=%d nn', toc,pathLength,pathLength1); % 打印运行时间toc和改进前后路径长度
imshow(map);rectangle('position',[1 1 size(map)-1],'edgecolor','b');
line(path0(:,2),path0(:,1),'Color','r'); %红线表示改进前
hold on
line(path3(:,2),path3(:,1), 'Color','b'); %蓝线表示改进后
最后
以上就是喜悦面包为你收集整理的RRT算法的一种关于最终路径的创新matlab仿真的全部内容,希望文章能够帮你解决RRT算法的一种关于最终路径的创新matlab仿真所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复