我是靠谱客的博主 殷勤短靴,最近开发中收集的这篇文章主要介绍2019腾讯广告算法大赛之清洗曝光广告数据集以及构造标签,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

首先是对清洗曝光广告日志中的脏数据进行清洗,脏数据主要包括三种情况,

第一: 该条广告记录中的广告ID不存在于静态广告数据和操作广告数据中,因为不存的话则该条数据无法构造训练集。

第二: 广告请求时间不合理,也即是出现二月三十号的这种情况

第三: 如果该条广告操作数据的取值不合理,例如(广告行业ID中出现多值,或者出现缺失数据)

最后在保存广告操作数据集时,我首先是按照天进行保存的,然后在进行合并操作操作,但是注意这样做并不会减少内存的使用,广告曝光数据集最后的保存样式是

 

然后是构造标签,我认为的标签应该是每个广告ID每天的广告曝光量,对于曝光广告数据集我们只需要使用pandas按照(广告ID,出价、 年、 月、 日)进行Groupby即可,其表示每天相同广告ID相同的出价的广告点击量是多少?

1、因为原始曝光日志中并没有直接给出年月日,所以需要构造三个属性表示记录创建的年、月、日

2、使用Groupby统计广告的点击量

其最后的保存样式是:

 

下一节介绍一下我如何清洗测试集以及如何构造训练集

 

清洗曝光广告日志的相关代码:

# -*- coding: utf-8 -*-
# @Time    : 2019/4/30 14:46
# @Author  : YYLin
# @Email   : 854280599@qq.com
# @File    : Dataload_Exposure_Data.py
import pandas as pd
import datetime
import time

load_all_method = True

# 需要读取广告操作数据集中的广告ID并将其转化成list
Exposure_Log_Data = pd.read_csv('data/Ad_Operation_Data.csv')
Ad_op_id = Exposure_Log_Data['ad_id'].drop_duplicates(keep='first', inplace=False)
# 使用pandas进行去重操作 该代码暂不使用
list_Ad_op_id = list(Ad_op_id)
print('操作广告数据集中list的长度是:', len(list_Ad_op_id), list_Ad_op_id[0:5], type(list_Ad_op_id[0]))

# 将训练集(曝光广告)转存成csv的格式
Total_Exposure_Log_Data_16 = []
Total_Exposure_Log_Data_17 = []
Total_Exposure_Log_Data_18 = []
Total_Exposure_Log_Data_19 = []
Total_Exposure_Log_Data_20 = []
Total_Exposure_Log_Data_21 = []
Total_Exposure_Log_Data_22 = []
Total_Exposure_Log_Data_23 = []
Total_Exposure_Log_Data_24 = []
Total_Exposure_Log_Data_25 = []
Total_Exposure_Log_Data_26 = []
Total_Exposure_Log_Data_27 = []
Total_Exposure_Log_Data_28 = []
Total_Exposure_Log_Data_301 = []
Total_Exposure_Log_Data_302 = []
Total_Exposure_Log_Data_303 = []
Total_Exposure_Log_Data_304 = []
Total_Exposure_Log_Data_305 = []
Total_Exposure_Log_Data_306 = []
Total_Exposure_Log_Data_307 = []
Total_Exposure_Log_Data_308 = []
Total_Exposure_Log_Data_309 = []
Total_Exposure_Log_Data_310 = []
Total_Exposure_Log_Data_311 = []
Total_Exposure_Log_Data_312 = []
Total_Exposure_Log_Data_313 = []
Total_Exposure_Log_Data_314 = []
Total_Exposure_Log_Data_315 = []
Total_Exposure_Log_Data_316 = []
Total_Exposure_Log_Data_317 = []
Total_Exposure_Log_Data_318 = []
Total_Exposure_Log_Data_319 = []
# 定义曝光日志中的相关列
Exposure_Log_Data_columns = ['Ad_Request_id', 'Ad_Request_Time', 'Ad_pos_id', 'user_id', 'ad_id', 'Ad_material_size',
                             'Ad_bid', 'Ad_pctr', 'Ad_quality_ecpm', 'Ad_total_Ecpm']

# 为数据集增加列名称
# Total_Exposure_Log_Data.append(Exposure_Log_Data_columns)

with open('../Dataset/tencent-dataset-19/totalExposureLog.out', 'r') as f:
    num = 0
    for i, line in enumerate(f):
        # if i == 0:
        # continue
        # print(i, ':', line, 'n', len(line), type(line))
        line = line.strip().split('t')
        # print(i, ':', line, type(line), 'n', len(line))
        # 测试数据集形状的时候使用
        # if i > 1000:
            # break
        # sys.exit()

        if (i % 5000000) == 0:
            print("*******我已经执行了", i)

        # 如果数据集中有缺失的数据 直接跳过该条数据
        if line[0] == '0' or line[1] == '0' or line[2] == '0' or line[3] == '0' or line[4] == '0' or line[5] == '0' 
                or line[6] == '0' or line[7] == '0' or line[8] == '0' or line[9] == '0':
            # print("该条数据创建时间混乱", i, ':', line)
            continue

        # 判断广告位数据集中是否存在多值情况
        if ',' in line[2]:
            # print("该条数据中广告位存在多值情况:", line)
            continue

        if '.' in line[0]:
            # print("该条数据中广告请求ID的数据为小数:", line)
            continue

        if '.' in line[3]:
            # print("该条数据中广告请求ID的数据为小数:", line)
            continue

        if '.' in line[4]:
            print("该条数据中广告请求ID的数据为小数:", line)
            continue

        # 判断该条数据的ID信息是否在静态广告之中 存在的话就跳过该条记录
        # 注意大部分广告曝光数据集中的广告ID都不在广告操作日志之中
        tmp_ad_id = int(line[4])

        if tmp_ad_id not in list_Ad_op_id:
            # print("*********操作数据集中不存在该条记录**********", line)
            continue

        # 数据集对应的存储格式是: 2018/10/18 10:41:18
        loacl_time = int(line[1])
        time_local = time.localtime(loacl_time)
        line[1] = time.strftime("%Y-%m-%d %H:%M:%S", time_local)
        # print(line[1], type(line[1]))  该类型是str

        # 定义用于比较时间范围的数据
        tmp_line = datetime.datetime.strptime(line[1], "%Y-%m-%d %H:%M:%S")
        cmp_time_29 = datetime.datetime.strptime("2019-02-28 23:59:59", "%Y-%m-%d %H:%M:%S")
        cmp_time_31 = datetime.datetime.strptime("2019-03-01", "%Y-%m-%d")

        # 如果时间不在合法的范围之内的话 就直接删除该条记录 并给与提示
        if tmp_line >= cmp_time_29 and tmp_line < cmp_time_31:
            # print("*******该条记录不合法需要重新删除*********", line)
            continue
        else:
            # 定义的是16数据集
            cmp_time_16 = datetime.datetime.strptime("2019-02-16", "%Y-%m-%d")
            cmp_time_16_night = datetime.datetime.strptime("2019-02-16 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_17 = datetime.datetime.strptime("2019-02-17", "%Y-%m-%d")
            cmp_time_17_night = datetime.datetime.strptime("2019-02-17 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_18 = datetime.datetime.strptime("2019-02-18", "%Y-%m-%d")
            cmp_time_18_night = datetime.datetime.strptime("2019-02-18 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_19 = datetime.datetime.strptime("2019-02-19", "%Y-%m-%d")
            cmp_time_19_night = datetime.datetime.strptime("2019-02-19 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_20 = datetime.datetime.strptime("2019-02-20", "%Y-%m-%d")
            cmp_time_20_night = datetime.datetime.strptime("2019-02-20 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_21 = datetime.datetime.strptime("2019-02-21", "%Y-%m-%d")
            cmp_time_21_night = datetime.datetime.strptime("2019-02-21 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_22 = datetime.datetime.strptime("2019-02-22", "%Y-%m-%d")
            cmp_time_22_night = datetime.datetime.strptime("2019-02-22 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_23 = datetime.datetime.strptime("2019-02-23", "%Y-%m-%d")
            cmp_time_23_night = datetime.datetime.strptime("2019-02-23 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_24 = datetime.datetime.strptime("2019-02-24", "%Y-%m-%d")
            cmp_time_24_night = datetime.datetime.strptime("2019-02-24 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_25 = datetime.datetime.strptime("2019-02-25", "%Y-%m-%d")
            cmp_time_25_night = datetime.datetime.strptime("2019-02-25 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_26 = datetime.datetime.strptime("2019-02-26", "%Y-%m-%d")
            cmp_time_26_night = datetime.datetime.strptime("2019-02-26 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_27 = datetime.datetime.strptime("2019-02-27", "%Y-%m-%d")
            cmp_time_27_night = datetime.datetime.strptime("2019-02-27 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_28 = datetime.datetime.strptime("2019-02-28", "%Y-%m-%d")
            cmp_time_28_night = datetime.datetime.strptime("2019-02-28 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_01 = datetime.datetime.strptime("2019-03-01", "%Y-%m-%d")
            cmp_time_01_night = datetime.datetime.strptime("2019-03-01 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_02 = datetime.datetime.strptime("2019-03-02", "%Y-%m-%d")
            cmp_time_02_night = datetime.datetime.strptime("2019-03-02 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_03 = datetime.datetime.strptime("2019-03-03", "%Y-%m-%d")
            cmp_time_03_night = datetime.datetime.strptime("2019-03-03 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_04 = datetime.datetime.strptime("2019-03-04", "%Y-%m-%d")
            cmp_time_04_night = datetime.datetime.strptime("2019-03-04 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_05 = datetime.datetime.strptime("2019-03-05", "%Y-%m-%d")
            cmp_time_05_night = datetime.datetime.strptime("2019-03-05 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_06 = datetime.datetime.strptime("2019-03-06", "%Y-%m-%d")
            cmp_time_06_night = datetime.datetime.strptime("2019-03-06 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_07 = datetime.datetime.strptime("2019-03-07", "%Y-%m-%d")
            cmp_time_07_night = datetime.datetime.strptime("2019-03-07 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_08 = datetime.datetime.strptime("2019-03-08", "%Y-%m-%d")
            cmp_time_08_night = datetime.datetime.strptime("2019-03-08 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_09 = datetime.datetime.strptime("2019-03-09", "%Y-%m-%d")
            cmp_time_09_night = datetime.datetime.strptime("2019-03-09 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_310 = datetime.datetime.strptime("2019-03-10", "%Y-%m-%d")
            cmp_time_310_night = datetime.datetime.strptime("2019-03-10 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_311 = datetime.datetime.strptime("2019-03-11", "%Y-%m-%d")
            cmp_time_311_night = datetime.datetime.strptime("2019-03-11 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_312 = datetime.datetime.strptime("2019-03-12", "%Y-%m-%d")
            cmp_time_312_night = datetime.datetime.strptime("2019-03-12 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_313 = datetime.datetime.strptime("2019-03-13", "%Y-%m-%d")
            cmp_time_313_night = datetime.datetime.strptime("2019-03-13 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_314 = datetime.datetime.strptime("2019-03-14", "%Y-%m-%d")
            cmp_time_314_night = datetime.datetime.strptime("2019-03-14 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_315 = datetime.datetime.strptime("2019-03-15", "%Y-%m-%d")
            cmp_time_315_night = datetime.datetime.strptime("2019-03-15 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_316 = datetime.datetime.strptime("2019-03-16", "%Y-%m-%d")
            cmp_time_316_night = datetime.datetime.strptime("2019-03-16 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_317 = datetime.datetime.strptime("2019-03-17", "%Y-%m-%d")
            cmp_time_317_night = datetime.datetime.strptime("2019-03-17 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_318 = datetime.datetime.strptime("2019-03-18", "%Y-%m-%d")
            cmp_time_318_night = datetime.datetime.strptime("2019-03-18 23:59:59", "%Y-%m-%d %H:%M:%S")

            cmp_time_319 = datetime.datetime.strptime("2019-03-19", "%Y-%m-%d")
            cmp_time_319_night = datetime.datetime.strptime("2019-03-19 23:59:59", "%Y-%m-%d %H:%M:%S")

            if tmp_line >= cmp_time_16 and tmp_line <= cmp_time_16_night:
                Total_Exposure_Log_Data_16.append(line)
                continue
            elif tmp_line >= cmp_time_17 and tmp_line <= cmp_time_17_night:
                Total_Exposure_Log_Data_17.append(line)
                continue
            elif tmp_line >= cmp_time_18 and tmp_line <= cmp_time_18_night:
                Total_Exposure_Log_Data_18.append(line)
                continue
            elif tmp_line >= cmp_time_19 and tmp_line <= cmp_time_19_night:
                Total_Exposure_Log_Data_19.append(line)
                continue
            elif tmp_line >= cmp_time_20 and tmp_line <= cmp_time_20_night:
                Total_Exposure_Log_Data_20.append(line)
                continue
            elif tmp_line >= cmp_time_21 and tmp_line <= cmp_time_21_night:
                Total_Exposure_Log_Data_21.append(line)
                continue
            elif tmp_line >= cmp_time_22 and tmp_line <= cmp_time_22_night:
                Total_Exposure_Log_Data_22.append(line)
                continue
            elif tmp_line >= cmp_time_23 and tmp_line <= cmp_time_23_night:
                Total_Exposure_Log_Data_23.append(line)
                continue
            elif tmp_line >= cmp_time_24 and tmp_line <= cmp_time_24_night:
                Total_Exposure_Log_Data_24.append(line)
                continue
            elif tmp_line >= cmp_time_25 and tmp_line <= cmp_time_25_night:
                Total_Exposure_Log_Data_25.append(line)
                continue
            elif tmp_line >= cmp_time_26 and tmp_line <= cmp_time_26_night:
                Total_Exposure_Log_Data_26.append(line)
                continue
            elif tmp_line >= cmp_time_27 and tmp_line <= cmp_time_27_night:
                Total_Exposure_Log_Data_27.append(line)
                continue
            elif tmp_line >= cmp_time_28 and tmp_line <= cmp_time_28_night:
                Total_Exposure_Log_Data_28.append(line)
                continue
            elif tmp_line >= cmp_time_01 and tmp_line <= cmp_time_01_night:
                Total_Exposure_Log_Data_301.append(line)
                continue
            elif tmp_line >= cmp_time_02 and tmp_line <= cmp_time_02_night:
                Total_Exposure_Log_Data_302.append(line)
                continue
            elif tmp_line >= cmp_time_03 and tmp_line <= cmp_time_03_night:
                Total_Exposure_Log_Data_303.append(line)
                continue
            elif tmp_line >= cmp_time_04 and tmp_line <= cmp_time_04_night:
                Total_Exposure_Log_Data_304.append(line)
                continue
            elif tmp_line >= cmp_time_05 and tmp_line <= cmp_time_05_night:
                Total_Exposure_Log_Data_305.append(line)
                continue
            elif tmp_line >= cmp_time_06 and tmp_line <= cmp_time_06_night:
                Total_Exposure_Log_Data_306.append(line)
                continue
            elif tmp_line >= cmp_time_07 and tmp_line <= cmp_time_07_night:
                Total_Exposure_Log_Data_307.append(line)
                continue
            elif tmp_line >= cmp_time_08 and tmp_line <= cmp_time_08_night:
                Total_Exposure_Log_Data_308.append(line)
                continue
            elif tmp_line >= cmp_time_09 and tmp_line <= cmp_time_09_night:
                Total_Exposure_Log_Data_309.append(line)
                continue
            elif tmp_line >= cmp_time_310 and tmp_line <= cmp_time_310_night:
                Total_Exposure_Log_Data_310.append(line)
                continue
            elif tmp_line >= cmp_time_311 and tmp_line <= cmp_time_311_night:
                Total_Exposure_Log_Data_311.append(line)
                continue
            elif tmp_line >= cmp_time_312 and tmp_line <= cmp_time_312_night:
                Total_Exposure_Log_Data_312.append(line)
                continue
            elif tmp_line >= cmp_time_313 and tmp_line <= cmp_time_313_night:
                Total_Exposure_Log_Data_313.append(line)
                continue
            elif tmp_line >= cmp_time_314 and tmp_line <= cmp_time_314_night:
                Total_Exposure_Log_Data_314.append(line)
                continue
            elif tmp_line >= cmp_time_315 and tmp_line <= cmp_time_315_night:
                Total_Exposure_Log_Data_315.append(line)
                continue
            elif tmp_line >= cmp_time_316 and tmp_line <= cmp_time_316_night:
                Total_Exposure_Log_Data_316.append(line)
                continue
            elif tmp_line >= cmp_time_317 and tmp_line <= cmp_time_317_night:
                Total_Exposure_Log_Data_317.append(line)
                continue
            elif tmp_line >= cmp_time_318 and tmp_line <= cmp_time_318_night:
                Total_Exposure_Log_Data_318.append(line)
                continue
            elif tmp_line >= cmp_time_319 and tmp_line <= cmp_time_319_night:
                Total_Exposure_Log_Data_319.append(line)
                continue
            else:
                print("该条记录不在规定的时间范围之内", line)

# 保存广告记录是16号的数据
Exposure_data_16 = pd.DataFrame(Total_Exposure_Log_Data_16)
Exposure_data_16.to_csv('data/Total_Exposure_Log_Data_16.csv'
                        , index=False, header=None)
del Exposure_data_16, Total_Exposure_Log_Data_16

# 保存广告记录是17号的数据
Exposure_data_17 = pd.DataFrame(Total_Exposure_Log_Data_17)
Exposure_data_17.to_csv('data/Total_Exposure_Log_Data_17.csv'
                        , index=False, header=None)
del Exposure_data_17, Total_Exposure_Log_Data_17

# 保存广告记录是18号的数据
Exposure_data_18 = pd.DataFrame(Total_Exposure_Log_Data_18)
Exposure_data_18.to_csv('data/Total_Exposure_Log_Data_18.csv'
                        , index=False, header=None)
del Exposure_data_18, Total_Exposure_Log_Data_18

# 保存广告记录是19号的数据
Exposure_data_19 = pd.DataFrame(Total_Exposure_Log_Data_19)
Exposure_data_19.to_csv('data/Total_Exposure_Log_Data_19.csv'
                        , index=False, header=None)
del Exposure_data_19, Total_Exposure_Log_Data_19

# 保存广告记录是20号的数据
Exposure_data_20 = pd.DataFrame(Total_Exposure_Log_Data_20)
Exposure_data_20.to_csv('data/Total_Exposure_Log_Data_20.csv'
                        , index=False, header=None)
del Exposure_data_20, Total_Exposure_Log_Data_20

# 保存广告记录是21号的数据
Exposure_data_21 = pd.DataFrame(Total_Exposure_Log_Data_21)
Exposure_data_21.to_csv('data/Total_Exposure_Log_Data_21.csv'
                        , index=False, header=None)
del Exposure_data_21, Total_Exposure_Log_Data_21

# 保存广告记录是22号的数据
Exposure_data_22 = pd.DataFrame(Total_Exposure_Log_Data_22)
Exposure_data_22.to_csv('data/Total_Exposure_Log_Data_22.csv'
                        , index=False, header=None)
del Exposure_data_22, Total_Exposure_Log_Data_22

# 保存广告记录是23号的数据
Exposure_data_23 = pd.DataFrame(Total_Exposure_Log_Data_23)
Exposure_data_23.to_csv('data/Total_Exposure_Log_Data_23.csv'
                        , index=False, header=None)
del Exposure_data_23, Total_Exposure_Log_Data_23

# 保存广告记录是24号的数据
Exposure_data_24 = pd.DataFrame(Total_Exposure_Log_Data_24)
Exposure_data_24.to_csv('data/Total_Exposure_Log_Data_24.csv'
                        , index=False, header=None)
del Exposure_data_24, Total_Exposure_Log_Data_24

# 保存广告记录是25号的数据
Exposure_data_25 = pd.DataFrame(Total_Exposure_Log_Data_25)
Exposure_data_25.to_csv('data/Total_Exposure_Log_Data_25.csv'
                        , index=False, header=None)
del Exposure_data_25, Total_Exposure_Log_Data_25

# 保存广告记录是26号的数据
Exposure_data_26 = pd.DataFrame(Total_Exposure_Log_Data_26)
Exposure_data_26.to_csv('data/Total_Exposure_Log_Data_26.csv'
                        , index=False, header=None)
del Exposure_data_26, Total_Exposure_Log_Data_26

# 保存广告记录是27号的数据
Exposure_data_27 = pd.DataFrame(Total_Exposure_Log_Data_27)
Exposure_data_27.to_csv('data/Total_Exposure_Log_Data_27.csv'
                        , index=False, header=None)
del Exposure_data_27, Total_Exposure_Log_Data_27

# 保存广告记录是28号的数据
Exposure_data_28 = pd.DataFrame(Total_Exposure_Log_Data_28)
Exposure_data_28.to_csv('data/Total_Exposure_Log_Data_28.csv'
                        , index=False, header=None)
del Exposure_data_28, Total_Exposure_Log_Data_28

# 保存广告记录是3月1号的数据
Exposure_data_301 = pd.DataFrame(Total_Exposure_Log_Data_301)
Exposure_data_301.to_csv('data/Total_Exposure_Log_Data_0301.csv'
                         , index=False, header=None)
del Exposure_data_301, Total_Exposure_Log_Data_301

# 保存广告记录是3月2号的数据
Exposure_data_302 = pd.DataFrame(Total_Exposure_Log_Data_302)
Exposure_data_302.to_csv('data/Total_Exposure_Log_Data_0302.csv'
                         , index=False, header=None)
del Exposure_data_302, Total_Exposure_Log_Data_302

# 保存广告记录是3月3号的数据
Exposure_data_303 = pd.DataFrame(Total_Exposure_Log_Data_303)
Exposure_data_303.to_csv('data/Total_Exposure_Log_Data_0303.csv'
                         , index=False, header=None)
del Exposure_data_303, Total_Exposure_Log_Data_303

# 保存广告记录是3月4号的数据
Exposure_data_304 = pd.DataFrame(Total_Exposure_Log_Data_304)
Exposure_data_304.to_csv('data/Total_Exposure_Log_Data_0304.csv'
                         , index=False, header=None)
del Exposure_data_304, Total_Exposure_Log_Data_304

# 保存广告记录是3月5号的数据
Exposure_data_305 = pd.DataFrame(Total_Exposure_Log_Data_305)
Exposure_data_305.to_csv('data/Total_Exposure_Log_Data_0305.csv'
                         , index=False, header=None)
del Exposure_data_305, Total_Exposure_Log_Data_305

# 保存广告记录是3月6号的数据
Exposure_data_306 = pd.DataFrame(Total_Exposure_Log_Data_306)
Exposure_data_306.to_csv('data/Total_Exposure_Log_Data_0306.csv'
                         , index=False, header=None)
del Exposure_data_306, Total_Exposure_Log_Data_306

# 保存广告记录是3月7号的数据
Exposure_data_307 = pd.DataFrame(Total_Exposure_Log_Data_307)
Exposure_data_307.to_csv('data/Total_Exposure_Log_Data_0307.csv'
                         , index=False, header=None)
del Exposure_data_307, Total_Exposure_Log_Data_307

# 保存广告记录是3月8号的数据
Exposure_data_308 = pd.DataFrame(Total_Exposure_Log_Data_308)
Exposure_data_308.to_csv('data/Total_Exposure_Log_Data_0308.csv'
                         , index=False, header=None)
del Exposure_data_308, Total_Exposure_Log_Data_308

# 保存广告记录是3月9号的数据
Exposure_data_309 = pd.DataFrame(Total_Exposure_Log_Data_309)
Exposure_data_309.to_csv('data/Total_Exposure_Log_Data_0309.csv'
                         , index=False, header=None)
del Exposure_data_309, Total_Exposure_Log_Data_309

# 保存广告记录是3月10号的数据
Exposure_data_310 = pd.DataFrame(Total_Exposure_Log_Data_310)
Exposure_data_310.to_csv('data/Total_Exposure_Log_Data_0310.csv'
                         , index=False, header=None)
del Exposure_data_310, Total_Exposure_Log_Data_310

# 保存广告记录是3月11号的数据
Exposure_data_311 = pd.DataFrame(Total_Exposure_Log_Data_311)
Exposure_data_311.to_csv('data/Total_Exposure_Log_Data_0311.csv'
                         , index=False, header=None)
del Exposure_data_311, Total_Exposure_Log_Data_311

# 保存广告记录是3月12号的数据
Exposure_data_312 = pd.DataFrame(Total_Exposure_Log_Data_312)
Exposure_data_312.to_csv('data/Total_Exposure_Log_Data_0312.csv'
                         , index=False, header=None)
del Exposure_data_312, Total_Exposure_Log_Data_312

# 保存广告记录是3月13号的数据
Exposure_data_313 = pd.DataFrame(Total_Exposure_Log_Data_313)
Exposure_data_313.to_csv('data/Total_Exposure_Log_Data_0313.csv'
                         , index=False, header=None)
del Exposure_data_313, Total_Exposure_Log_Data_313

# 保存广告记录是3月14号的数据
Exposure_data_314 = pd.DataFrame(Total_Exposure_Log_Data_314)
Exposure_data_314.to_csv('data/Total_Exposure_Log_Data_0314.csv'
                         , index=False, header=None)
del Exposure_data_314, Total_Exposure_Log_Data_314

# 保存广告记录是3月15号的数据
Exposure_data_315 = pd.DataFrame(Total_Exposure_Log_Data_315)
Exposure_data_315.to_csv('data/Total_Exposure_Log_Data_0315.csv'
                         , index=False, header=None)
del Exposure_data_315, Total_Exposure_Log_Data_315

# 保存广告记录是3月16号的数据
Exposure_data_316 = pd.DataFrame(Total_Exposure_Log_Data_316)
Exposure_data_316.to_csv('data/Total_Exposure_Log_Data_0316.csv'
                         , index=False, header=None)
del Exposure_data_316, Total_Exposure_Log_Data_316

# 保存广告记录是3月17号的数据
Exposure_data_317 = pd.DataFrame(Total_Exposure_Log_Data_317)
Exposure_data_317.to_csv('data/Total_Exposure_Log_Data_0317.csv'
                         , index=False, header=None)
del Exposure_data_317, Total_Exposure_Log_Data_317

# 保存广告记录是3月18号的数据
Exposure_data_318 = pd.DataFrame(Total_Exposure_Log_Data_318)
Exposure_data_318.to_csv('data/Total_Exposure_Log_Data_0318.csv'
                         , index=False, header=None)
del Exposure_data_318, Total_Exposure_Log_Data_318

# 保存广告记录是3月19号的数据
Exposure_data_319 = pd.DataFrame(Total_Exposure_Log_Data_319)
Exposure_data_319.to_csv('data/Total_Exposure_Log_Data_0319.csv'
                         , index=False, header=None)
del Exposure_data_319, Total_Exposure_Log_Data_319


Exposure_Log_Data_columns = ['Ad_Request_id', 'Ad_Request_Time', 'Ad_pos_id', 'user_id', 'ad_id', 'Ad_material_size',
                             'Ad_bid', 'Ad_pctr', 'Ad_quality_ecpm', 'Ad_total_Ecpm']

Total_Exposure_Log_Data_February = pd.concat(
                [pd.read_csv('../Dataset/data/Total_Exposure_Log_Data_' + str(i) + '.csv', names=Exposure_Log_Data_columns)
                 for i in range(16, 29)]).reset_index(drop=True)

Total_Exposure_Log_Data_February.to_csv('../Dataset/data/Total_Exposure_Log_Data_February.csv', index=False, header=Exposure_Log_Data_columns)

Total_Exposure_Log_Data_March = pd.concat(
                [pd.read_csv('../Dataset/data/Total_Exposure_Log_Data_03' + str(i) + '.csv', names=Exposure_Log_Data_columns) for i in range(1, 20)]).reset_index(drop=True)

Total_Exposure_Log_Data_March.to_csv('../Dataset/data/Total_Exposure_Log_Data_March.csv', index=False)

df_February = pd.read_csv('../Dataset/data/Total_Exposure_Log_Data_February.csv')
df_March = pd.read_csv('../Dataset/data/Total_Exposure_Log_Data_March.csv')

Total_Exposure_Log_Data = pd.concat([df_February, df_March]).reset_index(drop=True)
Total_Exposure_Log_Data.to_csv('../Dataset/data/Total_Exposure_Log_Data.csv', index=False, header=Exposure_Log_Data_columns)



 

 

生成指定的标签:

# -*- coding: utf-8 -*-
# @Time    : 2019/5/1 15:55
# @Author  : YYLin
# @Email   : 854280599@qq.com
# @File    : Generator_Label_For_Train.py
import pandas as pd
import datetime
import numpy as np
# 生成点击数并且暂时删除测试集中没有的属性
Total_Exposure_Log_Data = pd.read_csv('../Dataset/dataset_for_train/Total_Exposure_Log_Data.csv')
print("原始数据集中的样式是:n", Total_Exposure_Log_Data.info())
tfa = Total_Exposure_Log_Data.Ad_Request_Time.astype(str).apply(lambda x: datetime.datetime(int(x[:4]),
                                                                          int(x[5:7]),
                                                                          int(x[8:10]),
                                                                          int(x[11:13]),
                                                                          int(x[14:16]),
                                                                          int(x[17:])))

Total_Exposure_Log_Data['tfa_year'] = np.array([x.year for x in tfa])
Total_Exposure_Log_Data['tfa_month'] = np.array([x.month for x in tfa])
Total_Exposure_Log_Data['tfa_day'] = np.array([x.day for x in tfa])
print("增加单独的年月日之后的数据形状是:n", Total_Exposure_Log_Data.info())

Group_Exposure_Data = Total_Exposure_Log_Data.groupby(['tfa_year', 'tfa_month', 'tfa_day', 'ad_id', 'Ad_bid']).size().reset_index()
Group_Exposure_Data = Group_Exposure_Data.rename(columns={0: 'num_click'})
print("按照年月日 广告id和广告竞价进行分组之后的数据是:n", Group_Exposure_Data.head(5))

# 将曝光数据按照年月日 广告id和广告竞价删除重复的元素之后进行合并
Total_Exposure_Log_Data_one = Total_Exposure_Log_Data.drop_duplicates(subset=['tfa_year', 'tfa_month', 'tfa_day', 'ad_id', 'Ad_bid'] ,keep="first").reset_index(drop=True)
Clicks_of_Exposure_Data = pd.merge(Total_Exposure_Log_Data_one, Group_Exposure_Data, on=['tfa_year', 'tfa_month', 'tfa_day', 'ad_id', 'Ad_bid'])

# 删除测试集中没有的相关属性 并将结果进行保存
Clicks_of_Exposure_Data.drop('Ad_Request_id', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_Request_Time', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('user_id', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_material_size', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_pctr', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_quality_ecpm', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_total_Ecpm', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('tfa_year', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('tfa_month', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('tfa_day', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_pos_id', axis=1, inplace=True)
Clicks_of_Exposure_Data.drop('Ad_bid', axis=1, inplace=True)

print("广告数据集中需要保存的信息格式是:n", Clicks_of_Exposure_Data.info())
Clicks_of_Exposure_Data.to_csv('../Dataset/dataset_for_train/Clicks_of_Exposure_Data.csv', index=False)

# 将曝光日志按照ID和静态广告数据进行拼接操作
Ad_Static_Data = pd.read_csv('../Dataset/dataset_for_train/Ad_Static_Feature_Data.csv')
Ad_Static_Data.drop('Commodity_id', axis=1, inplace=True)
Ad_Static_Data.drop('Ad_account_id', axis=1, inplace=True)
Ad_Static_Data.drop('Creation_time', axis=1, inplace=True)
print("*********静态数据集的样式是:n", Ad_Static_Data.info())
Merce_Ad_Static_and_Exposure_Data = pd.merge(Clicks_of_Exposure_Data, Ad_Static_Data, on=['ad_id'])

# 读取广告操作数据集并拼接数据集
Op_Ad_Data = pd.read_csv('../Dataset/dataset_for_train/Ad_Operation_Data.csv').drop_duplicates(['ad_id'])
Op_Ad_Data.drop('Create_modify_time', axis=1, inplace=True)

Dataset_For_Train = pd.merge(Op_Ad_Data, Merce_Ad_Static_and_Exposure_Data, on=['ad_id'])
print("最后数据集保存的样式是:n", Dataset_For_Train.info())
Dataset_For_Train.to_csv('../Dataset/dataset_for_train/Dataset_For_Train.csv', index=False)



 

最后

以上就是殷勤短靴为你收集整理的2019腾讯广告算法大赛之清洗曝光广告数据集以及构造标签的全部内容,希望文章能够帮你解决2019腾讯广告算法大赛之清洗曝光广告数据集以及构造标签所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(56)

评论列表共有 0 条评论

立即
投稿
返回
顶部