我是靠谱客的博主 轻松眼神,最近开发中收集的这篇文章主要介绍代理辅助多任务优化算法(Matlab代码实现),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

  

????????????????欢迎来到本博客❤️❤️????????

????博主优势:????????????博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

????????????本文目录如下:????????????

目录

????1 概述

????2 运行结果

????3 Matlab代码实现

????4 参考文献


????1 概述

进化算法(EA)已被应用,具有解决广泛应用的强大能力,但它一次可以解决一个问题。为了提高效率,进化计算领域的一种新兴研究范式,提出了进化多任务(EMT)。EMT同时解决多个优化任务。EMT的有效性是通过任务间知识转移来改进每个任务的解决方案。多因素进化算法(MFEAs)是第一种解决多任务优化问题的算法。然而,它往往受到负面知识转移问题的影响。为了解决这个问题并提高MFEA的性能,我们建议构建一个代理模型,作为在MFEA中同时优化的辅助任务和目标任务。根据所提方法,代理模型是每个对应目标任务的相关任务,以增强任务间的积极知识转移。此外,代理模型可以减少局部最优的数量,并且结构简单。在基准和真实水库洪水发电问题上进行了实验,以检验所提算法的性能。对几个广泛使用的测试问题的比较实验表明,代理模型作为辅助任务可以显着提高MFEA的性能。

????2 运行结果

 

部分代码:

% UBA=32.728;
% LBA=-32.728;
% A_x=[-32.728:0.1:32.728];
% A_z=-20*exp(-0.2*sqrt((1/1)*(A_x.^2)))-exp((1/1)*(cos(2*pi.*A_x)))+exp(1)+20;                %原函数
% A_x=sort(A_x);
% hold on;
% plot(A_x,A_z,'r-','linewidth',2);
 %Sphere函数
UBS=100;
LBS=-100;
S_x=[-100:100];
S_z=S_x.^2;                %原函数
S_x=sort(S_x);
hold on;
plot(S_x,S_z,'r-','linewidth',1.5);

% %Rosenbrock
% UBS=10;
% LBS=-5;
% r_x=-5:0.1:10;
% r_z=100*r_x.^4+(r_x-1).^2;              %原函数
% r_x=sort(r_x);
% hold on;
% plot(r_x,r_z,'r-','linewidth',1.5);

UBR=5.12;
LBR=-5.12;
%  R_x=[-5.12:0.05:5.12];
% R_z=10+(R_x)'.^2-10*cos(2*pi.*(R_x)')+(R_x)'.^2;              %原函数
x=rand(205,1);
x=sort(x);
R_x=LBR+x*(UBR-LBR);
R_z=10+(R_x)'.^2-10*cos(2*pi.*(R_x)')+(R_x)'.^2;              %原函数
% x=sort(x);
figure
plot(x,R_z,'b-','linewidth',1.5,'MarkerIndices',1:5:length(R_z));
xlabel('x');
ylabel('y');
axis([0 1 0 70]);

result1_SAMTO(1,:)=85*44-mean(SAMTO_new(1).Toall_BestFitss(2:4:20,2:21));
result1_SAMTO(2,:)=85*145-mean(SAMTO_new(1).Toall_BestFitss(4:4:20,2:21));

result2_SAMTO(1,:)=85*44-SAMTO_new(2).Toall_BestFitss(1,:);
result2_SAMTO(2,:)=85*97-SAMTO_new(2).Toall_BestFitss(2,:);

result3_SAMTO(1,:)=85*97-SAMTO_new(3).Toall_BestFitss(1,:);
result3_SAMTO(2,:)=85*145-SAMTO_new(3).Toall_BestFitss(2,:);

% ST2T1_2=[global_precent,local_precent(:,1801:3000)];
% save 'ST2T1_2.mat' 'ST2T1_2';

st1t1=mean(ST1T1_2);   %Rastrigin function positive transfer to Griewank
ST1T1=[];
for i=1:150:3000
    ST1T1=[ST1T1,mean(st1t1(i:i+149))];
end
plot(ST1T1,'o-','color',[0.8547,0.33,0.10],...
    'linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST1T1));
hold on

st1t2=mean(ST1T2_2);  %Greiwank function positive transfer to Griewank
ST1T2=[];
for i=1:150:3000
    ST1T2=[ST1T2,mean(st1t2(i:i+149))];
end
plot(ST1T2,'*-g','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST1T2));
hold on

st2t1=mean(ST2T1_2);
ST2T1=[];
for i=1:150:3000
    ST2T1=[ST2T1,mean(st2t1(i:i+149))];
end
plot(ST2T1,'c->','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T1));
hold on

st2t2=mean(ST2T2_2);
ST2T2=[];
for i=1:150:3000
   ST2T2=[ST2T2,mean(st2t2(i:i+149))];
end
plot(ST2T2,'m-<','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T2));
hold on

t1t2=mean(T1T2_2);
T1T2=[];
for i=1:150:3000
    T1T2=[T1T2,mean(t1t2(i:i+149))];
end
plot(T1T2,'b-s','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T2));
hold on

title('Ankang Reservoir 2003 & 2000');
xlabel('Number of Function Evaluations');
ylabel('Average Positive transfer probability');
legend('The surrogate of T1 positive transfer to T1',...
       'The surrogate of T1 positive transfer to T2',...
       'The surrogate of T2 positive transfer to T1',...
       'The surrogate of T2 positive transfer to T2',...
       'T1 positive transfer to T2');
   
%  set(gca,'xticklabel',{'0','4500','9000','13500','18000','22500','27000',...
%      '31500','36000','40500','45000','49500','54000','58500','63000',...
%      '67500','72000','76500','81000','85500','90000'});
 set(gca,'xticklabel',{'0','9000','18000','27000','36000','45000','54000','63000','72000','81000','90000'});

????3 Matlab代码实现

????4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Shangqi Yang, Yutao Qi, Rui Yang, Xiaoliang Ma, Haibin Zhang (2022) Surrogate assist Multitasking optimization Algorithm

最后

以上就是轻松眼神为你收集整理的代理辅助多任务优化算法(Matlab代码实现)的全部内容,希望文章能够帮你解决代理辅助多任务优化算法(Matlab代码实现)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(60)

评论列表共有 0 条评论

立即
投稿
返回
顶部