我是靠谱客的博主 狂野酒窝,最近开发中收集的这篇文章主要介绍评价模型总结——个人学习笔记(二)2 权重比的确定3 组合评价法(客观与主观结合),觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

参考链接:模型总结

2 权重比的确定

再对数据进行预处理后,我们需要确立各指标对评价对象的权重。主观上赋权重比误差很大,所以我们常常用层次分析法(AHP)(主观),主层次分析法,灰色综合评价法(灰色关联度分析),模糊综合评价法,BP神经网络综合评价法,数据包络法(DEA),组合评价法。

2.1 层次分析法(AHP)

原理
基本思想:是定性与定量相结合的多准则决策、评价方法。将决策的有关元素分解成目标层、准则层和方案层,并通过人们的判断对决策方案的优劣进行排序,在此基础上进行定性和定量分析。它把人的思维过程层次化、数量化,并用数学为分析、决策、评价、预报和控制提供定量的依据。

优点:它完全依靠主观评价做出方案的优劣排序,所需数据量少,决策花费的时间很短。从整体上看,AHP在复杂决策过程中引入定量分析,并充分利用决策者在两两比较中给出的偏好信息进行分析与决策支持,既有效地吸收了定性分析的结果,又发挥了定量分析的优势,从而使决策过程具有很强的条理性和科学性,特别适合在社会经济系统的决策分析中使用。

缺点:用AHP进行决策主观成分很大。当决策者的判断过多地受其主观偏好影响,而产生某种对客观规律的歪曲时,AHP的结果显然就靠不住了。

适用范围:尤其适合于人的定性判断起重要作用的、对决策结果难于直接准确计量的场合。要使AHP的决策结论尽可能符合客观规律,决策者必须对所面临的问题有比较深入和全面的认识。另外,当遇到因素众多,规模较大的评价问题时,该模型容易出现问题,它要求评价者对问题的本质、包含的要素及其相互之间的逻辑关系能掌握得十分透彻,否则评价结果就不可靠和准确。

改进方法:

(1) 成对比较矩阵可以采用德尔菲法获得。

(2) 如果评价指标个数过多(一般超过9个),利用层次分析法所得到的权重就有一定的偏差,继而组合评价模型的结果就不再可靠。可以根据评价对象的实际情况和特点,利用一定的方法,将各原始指标分层和归类,使得每层各类中的指标数少于9个。

基本步骤:构建层次结构模型;构建成对比较矩阵;层次单排序及一致性检验(即判断主观构建的成对比较矩阵在整体上是否有较好的一致性);层次总排序及一致性检验(检验层次之间的一致性)。
(1).建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常为准则或指标层.当准则过多时(比如多于9个)应进一步分解出子准则层.
(2).构造成对比较阵 从层次结构模型的第2层开始,对于从属于(或影响及)上一层每个因素的同一层诸因素,用成对比较法和l-9比较尺度构造成对比较阵,直到最下层.
(3).计算权向量并做一致性检验 对于每一个成对比较阵计算最大特征根及对应特征向量(计算方法见本节第三小节),利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,需重新构造成对比较阵.
(4).计算组合权向量并做组合一致性检验 利用(10)式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.

2.2 主成分分析(客观)

主成分分析不仅可以预处理数据也可以确定权重比
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
主层次分析法通俗易懂的解释
小结
分析方法主要可以分为定性分析和定量分析,定性评估效率的方法具有很大的主观性,评估结果存在偶然性,用的较少。

层次分析法(Analytic Hierarchy Process,简称AHP)是将与决策有关的元素分解成目标、准则、方案等层次,进行比较之后进行综合评价,得出各指标的相对重要性,从而确定其权重,在此基础之上进行定性和定量分析的决策方法。该方法是一种层次权重决策分析方法。这种方法的特点是在对复杂的决策问题的本质、影响因素及其内在关系等进行深入分析的基础上,利用较少的定量信息使决策的思维过程数学化,从而为多目标、多准则或无结构特性的复杂决策问题提供简便的决策方法,尤其适合于对决策结果难于直接准确计量的场合。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。将许多相关性很高的变量转化成彼此相互独立或不相关的变量,进而降维。

总的来说这些方法都是想办法简化问题。

在后面的组合评价法我们会两种不同的方法结合一起用。

2.3 灰色关联分析法

具体使用代码及数学公式
对于两个系统之间的因素,其随时间或不同对象而变化的关联性大小的量度,称为关联度。在系统发展过程中,若两个因素变化的趋势具有一致性,即同步变化程度较高,即可谓二者关联程度较高;反之,则较低。因此,灰色关联分析方法,是根据因素之间发展趋势的相似或相异程度,亦即“灰色关联度”,作为衡量因素间关联程度的一种方法。
基本思想:灰色关联分析的实质就是,可利用各方案与最优方案之间关联度大小对评价对象进行比较、排序。关联度越大,说明比较序列与参考序列变化的态势越一致,反之,变化态势则相悖。由此可得出评价结果。

基本步骤:建立原始指标矩阵;确定最优指标序列;进行指标标准化或无量纲化处理;求差序列、最大差和最小差;计算关联系数;计算关联度。

优点:是一种评价具有大量未知信息的系统的有效模型,是定性分析和定量分析相结合的综合评价模型,该模型可以较好地解决评价指标难以准确量化和统计的问题,可以排除人为因素带来的影响,使评价结果更加客观准确。整个计算过程简单,通俗易懂,易于为人们所掌握;数据不必进行归一化处理,可用原始数据进行直接计算,可靠性强;评价指标体系可以根据具体情况增减;无需大量样本,只要有代表性的少量样本即可

缺点:要求样本数据且具有时间序列特性;只是对评判对象的优劣做出鉴别,并不反映绝对水平,故基于灰色关联分析综合评价具有“相对评价”的全部缺点。

适用范围:**对样本量没有严格要求,不要求服从任何分布,适合只有少量观测数据的问题;应用该种方法进行评价时,指标体系及权重分配是一个关键的问题,选择的恰当与否直接影响最终评价结果。 **

改进方法

(1) 采用组合赋权法:根据客观赋权法和主观赋权法综合而得权系数。 (这个现在应用很广泛,组合评价)

(2) 结合TOPSIS法:不仅关注序列与正理想序列的关联度,而且关注序列与负理想序列的关联度,依据公式计算最后的关联度。

2.4 模糊综合评价法

基本思想:是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,从多个因素对被评价事物隶属等级(或称为评语集)状况进行综合性评价的一种方法。综合评判对评判对象的全体,根据所给的条件,给每个对象赋予一个非负实数评判指标,再据此排序择优。

基本步骤:确定因素集、评语集;构造模糊关系矩阵;确定指标权重;进行模糊合成和做出评价。

优点::数学模型简单,容易掌握,对多因素、多层次的复杂问题评判效果较好。模糊评判模型不仅可对评价对象按综合分值的大小进行评价和排序,而且还可根据模糊评价集上的值按最大隶属度原则去评定对象所属的等级,结果包含的信息量丰富。评判逐对进行,对被评对象有唯一的评价值,不受被评价对象所处对象集合的影响。接近于东方人的思维习惯和描述方法,因此它更适用于对社会经济系统问题进行评价。

缺点:并不能解决评价指标间相关造成的评价信息重复问题,隶属函数的确定还没有系统的方法,而且合成的算法也有待进一步探讨。其评价过程大量运用了人的主观判断,由于各因素权重的确定带有一定的主观性,因此,总的来说,模糊综合评判是一种基于主观信息的综合评价方法。

应用范围:广泛地应用于经济管理等领域。综合评价结果的可靠性和准确性依赖于合理选取因素、因素的权重分配和综合评价的合成算子等。

改进方法:

(1) 采用组合赋权法:根据客观赋权法和主观赋权法综合而得权系数。
主要介绍与例子

2.5 BP神经网络综合评价法

基本思想:是一种交互式的评价方法,它可以根据用户期望的输出不断修改指标的权值,直到用户满意为止。因此,一般来说,人工神经网络评价方法得到的结果会更符合实际情况。

优点:神经网络具有自适应能力,能对多指标综合评价问题给出一个客观评价,这对于弱化权重确定中的人为因素是十分有益的。在以前的评价方法中,传统的权重设计带有很大的模糊性,同时权重确定中人为因素影响也很大。随着时间、空间的推移,各指标对其对应问题的影响程度也可能发生变化,确定的初始权重不一定符合实际情况。再者,考虑到整个分析评价是一个复杂的非线性大系统,必须建立权重的学习机制,这些方面正是人工神经网络的优势所在。针对综合评价建模过程中变量选取方法的局限性,采用神经网络原理可对变量进行贡献分析,进而剔除影响不显著和不重要的因素,以建立简化模型,可以避免主观因素对变量选取的干扰。

缺点: ANN在应用中遇到的最大问题是不能提供解析表达式,权值不能解释为一种回归系数,也不能用来分析因果关系,目前还不能从理论上或从实际出发来解释ANN的权值的意义。需要大量的训练样本,精度不高,应用范围是有限的。最大的应用障碍是评价算法的复杂性,人们只能借助计算机进行处理,而这方面的商品化软件还不够成熟。

适用范围:神经网络评价模型具有自适应能力、可容错性,能够处理非线性、非局域性的大型复杂系统。在对学习样本训练中,无需考虑输入因子之间的权系数,ANN通过输入值与期望值之间的误差比较,沿原连接权自动地进行调节和适应,因此该方法体现了因子之间的相互作用。

改进方法:

(1) 采用组合评价法:对用其它评价方法得出的结果,选取一部分作为训练样本,一部分作为待测样本进行检验,如此对神经网络进行训练,知道满足要求为止,可得到更好的效果。
所以我们用这个来进行模型检验,可以预测接下来的数据
具体用法
数学原理
扩充
几种神经网络模型

2.6 数据包络分析

数据包络分析(data envelopment analysis, DEA)是著名运筹学家A. Charnes 和 W.
W. Copper 等学者以“相对效率”概念为基础,根据多指标投入和多指标产出对相同类型的
单位(部门)进行相对有效性或效益评价的一种系统分析方法。它是处理多目标决策问题的
好方法。它应用数学规划模型计算比较决策单元之间的相对效率,对评价对象做出评价。
DEA特别适用于具有多输入多输出的复杂系统,这主要体现在以下几点。
(1)DEA以决策单位各输入输出的权重为变量,从最有利于决策单元的角度进行评价,
从而避免了确定各指标在优先意义下的权重。
(2)假定每个输入都关联到一个或者多个输出,而且输出输入之间确实存在某种关系,
使用DEA方法则不必确定这种关系的显示表达式。

DEA最突出的优点是无须任何权重假设,每一输入输出的权重不是根据评价者的主观认定,而是由决策单元的实际数据求得的最优权重。因此,DEA方法排除了很多主观因素,具有很强的客观性。
参考例子
原理
代码实现

2.6 熵权法

客观求权重比,比较简单
代码及数学原理

2.7 理想解法(也称 TOPSIS 法)

本节介绍多属性决策
问题的理想解法,理想解法亦称为 TOPSIS 法, 是一种有效的多指标评价方法。这种方法通过构造评价问题的正理想解和负理想解, 即各指标的最优解和最劣解, 并用靠近正理想解和远离负理想解的程度, 通过计算每个方案到理想方案的相对贴近度来对方案进行排序,从而选出最优方案。
在这里插入图片描述
在这里插入图片描述
具体原理与过程在这里插入图片描述
参考代码

3 组合评价法(客观与主观结合)

将上述各方法灵活应用在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最后

以上就是狂野酒窝为你收集整理的评价模型总结——个人学习笔记(二)2 权重比的确定3 组合评价法(客观与主观结合)的全部内容,希望文章能够帮你解决评价模型总结——个人学习笔记(二)2 权重比的确定3 组合评价法(客观与主观结合)所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部