概述
金融
- 美国劳工部统计局官方发布数据
- 上证A股日线数据,1999.12.09 至 2016.06.08,前复权,1095支股票
- 深证A股日线数据,1999.12.09 至 2016.06.08,前复权,1766支股票
- 深证创业板日线数据,1999.12.09 至 2016.06.08,前复权,510支股票
- MT4平台外汇交易历史数据
- Forex平台外汇交易历史数据
- 几组外汇交易逐笔(Ticks)数据
- 美国股票新闻数据【Kaggle数据】
- 美国医疗保险市场数据【Kaggle数据】
- 美国金融客户投诉数据【Kaggle数据】
- Lending Club 网贷违约数据【Kaggle数据】
- 信用卡欺诈数据【Kaggle 数据】
- 某个金融产品实时交易数据【Kaggle数据】
- 美国股票数据XBRL【Kaggle数据】
- 纽约股票交易所数据【Kaggle数据】
交通
- 2013年纽约出租车行驶数据
- Udacity自动驾驶数据
- 纽约 Uber 接客数据 【Kaggle数据】
- 英国车祸数据(2005-2015)【Kaagle数据】
- 芝加哥汽车超速数据【Kaggle数据】
- KITTI 自动驾驶任务数据【数据太大仅有一部分】
- Cityscapes 场景标注数据【数据太大仅有介绍】
商业
- Amazon 食品评论数据【Kaggle数据】
- Amazon 无锁手机评论数据【Kaggle数据】
- 美国视频游戏销售和评价数据【Kaggle数据】
- Kaggle 各项竞赛情况数据【Kaggle数据】
- Airbnb 开放的民宿信息和住客评论数据
推荐系统
- Netflix 电影评价数据
- MovieLens 20m 电影推荐数据集
- WikiLens
- Jester
- HetRec2011
- Book Crossing
- Large Movie Review
- Retailrocket 商品评论和推荐数据
医疗健康
- 人识别物体时大脑核磁共振影像数据
- 人理解单词时大脑核磁共振影像数据
- 心脏病心房图像及标注数据
- 细胞病理识别
- FIRE 视网膜眼底病变图像数据
- 食物营养成分数据 【Kaggle数据】
- EGG 大脑电波形状数据【Kaggle数据】
- 某人基因序列数据【Kaggle数据】
- 癌症CT影像数据【Kaggle数据】
- 软组织肉瘤CT图像数据【Kaggle数据】
- 美国国家健康与服务部-国家癌症研究所发起的癌症数据仓库介绍【仅有介绍】
- Data Science Bowl 2017 肺癌识别竞赛数据【数据太大仅有介绍】
- TCGA-LUAD 肺癌CT图像数据
- RAID 肺癌CT图像数据
图像数据
综合图像
- Visual Genome 图像数据
- Visual7w 图像数据
- COCO 图像数据
- SUFR 图像数据
- ILSVRC 2014 训练数据(ImageNet的一部分)
- PASCAL Visual Object Classes 2012 图像数据
- PASCAL Visual Object Classes 2011 图像数据
- PASCAL Visual Object Classes 2010 图像数据
- 80 Million Tiny Image 图像数据【数据太大仅有介绍】
- ImageNet【数据太大仅有介绍】
- Google Open Images【数据太大仅有介绍】
场景图像
- Street Scences 图像数据
- Places2 场景图像数据
- UCF Google Street View 图像数据
- SUN 场景图像数据
- The Celebrity in Places 图像数据
Web标签图像
- HARRISON 社交标签图像
- NUS-WIDE 标签图像
- Visual Synset 标签图像
- Animals With Attributes 标签图像
人形轮廓图像
- MPII Human Shape人体轮廓数据
- Biwi Kinect Head Pose 头部姿势数据
- 上半身人像数据
- INRIA Person 数据集
视觉文字识别图像
- Street View House Number 门牌号图像数据
- MNIST 手写数字识别图像数据
- 3D MNIST 数字识别图像数据【Kaggle数据】
- MediaTeam Document 文档影印和内容数据
- Text Recognition 文字图像数据
- NIST Handprinted Forms and Characters 手写英文字符数据
- NIST Structured Forms Reference Set of Binary Images (SFRS) 图像数据
- NIST Structured Forms Reference Set of Binary Images (SFRS) II 图像数据
特定一类事物图像
- 著名的猫图像标注数据
- Caltech-UCSD Birds200 鸟类图像数据
- Stanford Car 汽车图像数据
- Cars 汽车图像数据
- MIT Cars 汽车图像数据
- Stanford Cars 汽车图像数据
- Food-101 美食图像数据
- 17_Category_Flower 图像数据
- 102_Category_Flower 图像数据
- UCI Folio Leaf 图像数据
- Labeled Fishes in the Wild 鱼类图像
- 美国 Yelp 点评网站酒店照片
- CMU-Oxford Sculpture 塑像雕像图像
- Oxford-IIIT Pet 宠物图像数据
- Nature Conservancy Fisheries Monitoring 过度捕捞监控图像数据【Kaggle数据】
材质纹理图像
- CURET 纹理材质图像数据
- ETHZ Synthesizability 纹理图像数据
- KTH-TIPS 纹理材质图像数据
- Describable Textures 纹理图像数据
物体分类图像
- COIL-20 图像数据
- COIL-100 图像数据
- Caltech-101 图像数据
- Caltech-256 图像数据
- CIFAR-10 图像数据
- CIFAR-100 图像数据
- STL-10 图像数据
- LabelMe_12_50k图像数据
- NORB v1.0 图像数据
- NEC Toy Animal 图像数据
- iCubWorld 图像分类数据
- Multi-class 图像分类数据
- GRAZ 图像分类数据
人脸图像
- IMDB-WIKI 500k+ 人脸图像、年龄性别数据
- Labeled Faces in the Wild 人脸数据
- Extended Yale Face Database B 人脸数据
- Bao Face 人脸数据
- DC-IGN 论文人脸数据
- 300 Face in Wild 图像数据
- BioID Face 人脸数据
- CMU Frontal Face Images
- FDDB_Face Detection Data Set and Benchmark
- NIST Mugshot Identification Database
- Faces in the Wild 人脸数据
- CelebA 名人人脸图像数据
- VGG Face 人脸图像数据
- Caltech 10k Web Faces 人脸图像数据
姿势动作图像
- HMDB_a large human motion database
- Human Actions and Scenes Dataset
- Buffy Stickmen V3 人体轮廓识别图像数据
- Human Pose Evaluator 人体轮廓识别图像数据
- Buffy pose 人类姿势图像数据
- VGG Human Pose Estimation 姿势图像标注数据
指纹识别
- NIST FIGS 指纹识别数据
- NIST Supplemental Fingerprint Card Data (SFCD) 指纹识别数据
- NIST Plain and Rolled Images from Paired Fingerprint Cards in 500 pixels per inch 指纹识别数据
- NIST Plain and Rolled Images from Paired Fingerprint Cards 1000 pixels per inch 指纹识别数据
其它图像数据
- Visual Question Answering V1.0 图像数据
- Visual Question Answering V2.0 图像数据
视频数据
综合视频
- DAVIS_Densely Annotated Video Segmentation 数据
- YouTube-8M 视频数据集【数据太大仅有介绍】
- YouTube 网站视频备份【数据太大仅有介绍】
人类动作视频
- Microsoft Research Action 人类动作视频数据
- UCF50 Action Recognition 动作识别数据
- UCF101 Action Recognition 动作识别数据
- UT-Interaction 人类动作视频数据
- UCF iPhone 运动中传感器数据
- UCF YouTube 人类动作视频数据
- UCF Sport 人类动作视频数据
- UCF-ARG 人类动作视频数据
- HMDB 人类动作视频
- HOLLYWOOD2 人类行为动作视频数据
- Recognition of human actions 动作视频数据
- Motion Capture 动作捕捉视频数据
- SBU Kinect Interaction 肢体动作视频数据
目标检测视频
- UCSD Pedestrian 行人视频数据
- Caltech Pedestrian 行人视频数据
- ETH 行人视频数据
- INRIA 行人视频数据
- TudBrussels 行人视频数据
- Daimler 行人视频数据
- ALOV++ 物体追踪视频数据
密集人群视频
- Crowd Counting 高密度人群图像
- Crowd Segmentation 高密度人群视频数据
- Tracking in High Density Crowds 高密度人群视频
其它视频
- Fire Detection 视频数据
音频数据
综合音频
- Google Audioset 音频数据【数据太大仅有介绍】
语音识别
- Sinhala TTS 英语语音识别
- TIMIT 美式英语语音识别数据
- LibriSpeech ASR corpus 语音数据
- Room Impulse Response and Noise 语音数据
- ALFFA 非洲语音数据
- THUYG-20 维吾尔语语音数据
- AMI Corpus 语音识别
自然语言处理
- RCV1英语新闻数据
- 20news 英语新闻数据
- First Quora Release Question Pairs 问答数据
- JRC Names各国语言专有实体名称
- Multi-Domain Sentiment V2.0
- LETOR 信息检索数据
- Yale Youtube Vedio Text
- 斯坦福问答数据【Kaggle数据】
- 美国假新闻数据【Kaggle数据】
- NIPS会议文章信息数据(1987-2016)【Kaggle数据】
- 2016年美国总统选举辩论数据【Kaggle数据】
- WikiLinks 跨文档指代语料
- European Parliament Proceedings Parallel Corpus 机器翻译数据
- WikiText 英语语义词库数据
- WMT 2011 News Crawl 机器翻译数据
- Stanford Sentiment Treebank 词汇数据
社会数据
- 希拉里邮件门泄露邮件
- 波士顿 Airbnb 公开数据【Kaggle数据】
- 世界各国经济发展数据【Kaagle数据】
- 世界大学排名芝加哥犯罪数据(2001-2017)【Kaagle数据】
- 世界范围显著地震数据(1965-2016)【Kaagle数据】
- 美国婴儿姓名数据【Kaagle数据】
- 全世界鲨鱼袭击人类数据【Kaagle数据】
- 1908年以来空难数据【Kaagle数据】
- 2016年美国总统大选数据【Kaagle数据】
- 2013年美国社区统计数据【Kaagle数据】
- 2014年美国社区统计数据【Kaagle数据】
- 2015年美国社区统计数据【Kaagle数据】
- 欧洲足球运动员赛事表现数据【Kaagle数据】
- 美国环境污染数据【Kaagle数据】
- 美国H1-B签证申请数据【Kaggle数据】
- IMDB五千部电影数据【Kaggle数据】
- 2015年航班延误和取消数据【Kaggle数据】
- 凶杀案报告数据【Kaggle数据】
- 人力资源分析数据【Kaggle数据】
- 美国费城犯罪数据【Kaggle数据】
- 安然公司邮件数据【Kaggle数据】
- 历史棒球数据【Kaggle数据】
- 美联航 Twitter 用户评论数据【Kaggle数据】
- 波士顿 Airbnb 公开数据【Kaggle数据】
处理后的科研和竞赛数据
- NIPS 2003 属性选择竞赛数据
- 台湾大学林智仁教授处理为 LibSVM 格式的分类建模数据
- Large-scale 分类建模数据
- 几个UCI 中 large-scale 分类建模数据
- Social Computing Data Repository 社交网络数据
2、[导读] “大数据时代”,数据为王!无论是数据挖掘还是目前大热的深度学习领域都离不开“大数据”。大公司们一般会有自己的数据,但对于创业公司或是高校老师、学生来说,“Where can I get large datasets open to the public?”是不得不面对的一个问题。
本文结合笔者在研究生学习、科研期间使用过以及阅读文献了解到的深度学习视觉领域常用的开源数据集,进行介绍和汇总。
MNIST
深度学习领域的“Hello World!”,入门必备!MNIST是一个手写数字数据库,它有60000个训练样本集和10000个测试样本集,每个样本图像的宽高为28*28。此数据集是以二进制存储的,不能直接以图像格式查看,不过很容易找到将其转换成图像格式的工具。
最早的深度卷积网络LeNet便是针对此数据集的,当前主流深度学习框架几乎无一例外将MNIST数据集的处理作为介绍及入门第一教程,其中Tensorflow关于MNIST的教程非常详细。
数据集大小:~12MB
下载地址:
http://yann.lecun.com/exdb/mnist/index.html
Imagenet
MNIST将初学者领进了深度学习领域,而Imagenet数据集对深度学习的浪潮起了巨大的推动作用。深度学习领域大牛Hinton在2012年发表的论文《ImageNet Classification with Deep Convolutional Neural Networks》在计算机视觉领域带来了一场“革命”,此论文的工作正是基于Imagenet数据集。
Imagenet数据集有1400多万幅图片,涵盖2万多个类别;其中有超过百万的图片有明确的类别标注和图像中物体位置的标注,具体信息如下:
1)Total number of non-empty synsets: 21841
2)Total number of images: 14,197,122
3)Number of images with bounding box annotations: 1,034,908
4)Number of synsets with SIFT features: 1000
5)Number of images with SIFT features: 1.2 million
Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集文档详细,有专门的团队维护,使用非常方便,在计算机视觉领域研究论文中应用非常广,几乎成为了目前深度学习图像领域算法性能检验的“标准”数据集。
与Imagenet数据集对应的有一个享誉全球的“ImageNet国际计算机视觉挑战赛(ILSVRC)”,以往一般是google、MSRA等大公司夺得冠军,今年(2016)ILSVRC2016中国团队包揽全部项目的冠军。
Imagenet数据集是一个非常优秀的数据集,但是标注难免会有错误,几乎每年都会对错误的数据进行修正或是删除,建议下载最新数据集并关注数据集更新。
数据集大小:~1TB(ILSVRC2016比赛全部数据)
下载地址:
http://www.image-net.org/about-stats
COCO
COCO(Common Objects in Context)是一个新的图像识别、分割和图像语义数据集,它有如下特点:
1)Object segmentation
2)Recognition in Context
3)Multiple objects per image
4)More than 300,000 images
5)More than 2 Million instances
6)80 object categories
7)5 captions per image
8)Keypoints on 100,000 people
COCO数据集由微软赞助,其对于图像的标注信息不仅有类别、位置信息,还有对图像的语义文本描述,COCO数据集的开源使得近两三年来图像分割语义理解取得了巨大的进展,也几乎成为了图像语义理解算法性能评价的“标准”数据集。
Google开源的开源了图说生成模型show and tell就是在此数据集上测试的,想玩的可以下下来试试哈。
数据集大小:~40GB
下载地址:http://mscoco.org/
PASCAL VOC
PASCAL VOC挑战赛是视觉对象的分类识别和检测的一个基准测试,提供了检测算法和学习性能的标准图像注释数据集和标准的评估系统。PASCAL VOC图片集包括20个目录:人类;动物(鸟、猫、牛、狗、马、羊);交通工具(飞机、自行车、船、公共汽车、小轿车、摩托车、火车);室内(瓶子、椅子、餐桌、盆栽植物、沙发、电视)。PASCAL VOC挑战赛在2012年后便不再举办,但其数据集图像质量好,标注完备,非常适合用来测试算法性能。
数据集大小:~2GB
下载地址:
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/index.html
CIFAR
CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。CIFAR-100与CIFAR-10类似,包含100个类,每类有600张图片,其中500张用于训练,100张用于测试;这100个类分组成20个超类。图像类别均有明确标注。CIFAR对于图像分类算法测试来说是一个非常不错的中小规模数据集。
数据集大小:~170MB
下载地址:
http://www.cs.toronto.edu/~kriz/cifar.html
Open Image
过去几年机器学习的发展使得计算机视觉有了快速的进步,系统能够自动描述图片,对共享的图片创造自然语言回应。其中大部分的进展都可归因于 ImageNet 、COCO这样的数据集的公开使用。谷歌作为一家伟大的公司,自然也要做出些表示,于是乎就有了Open Image。
Open Image是一个包含~900万张图像URL的数据集,里面的图片通过标签注释被分为6000多类。该数据集中的标签要比ImageNet(1000类)包含更真实生活的实体存在,它足够让我们从头开始训练深度神经网络。
谷歌出品,必属精品!唯一不足的可能就是它只是提供图片URL,使用起来可能不如直接提供图片方便。
此数据集,笔者也未使用过,不过google出的东西质量应该还是有保障的。
数据集大小:~1.5GB(不包括图片)
下载地址:
https://github.com/openimages/dataset
Youtube-8M
Youtube-8M为谷歌开源的视频数据集,视频来自youtube,共计8百万个视频,总时长50万小时,4800类。为了保证标签视频数据库的稳定性和质量,谷歌只采用浏览量超过1000的公共视频资源。为了让受计算机资源所限的研究者和学生也可以用上这一数据库,谷歌对视频进行了预处理,并提取了帧级别的特征,提取的特征被压缩到可以放到一个硬盘中(小于1.5T)。
此数据集的下载提供下载脚本,由于国内网络的特殊原因,下载此数据经常断掉,不过还好下载脚本有续传功能,过一会儿重新连接就能再连上。可以写一个脚本检测到下载中断后就sleep一段时间然后再重新请求下载,这样就不用一直守着了。(截至发文,断断续续的下载,笔者表示还没下完呢……)
数据集大小:~1.5TB
下载地址:https://research.google.com/youtube8m/
以上是笔者根据学习科研和文献阅读经历总结的目前深度学习视觉领域研究人员常用数据集。由于个人学识有限,难免有疏漏和不当的地方,望读者朋友们不吝赐教。
如果以上数据集还不能满足你的需求的话,不妨从下面找找吧。
1.深度学习数据集收集网站
http://deeplearning.net/datasets/**
收集大量的各深度学习相关的数据集,但并不是所有开源的数据集都能在上面找到相关信息。
2、Tiny Images Dataset
http://horatio.cs.nyu.edu/mit/tiny/data/index.html
包含8000万的32x32图像,CIFAR-10和CIFAR-100便是从中挑选的。
3、CoPhIR
http://cophir.isti.cnr.it/whatis.html
雅虎发布的超大Flickr数据集,包含1亿多张图片。
4、MirFlickr1M
http://press.liacs.nl/mirflickr/Flickr数据集中挑选出的100万图像集。
5、SBU captioned photo dataset
http://dsl1.cewit.stonybrook.edu/~vicente/sbucaptions/Flickr的一个子集,包含100万的图像集。
6、NUS-WIDE
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htmFlickr中的27万的图像集。
7、Large-Scale Image Annotation using Visual Synset(ICCV 2011)
http://cpl.cc.gatech.edu/projects/VisualSynset/机器标注的一个超大规模数据集,包含2亿图像。
8、SUN dataset
http://people.csail.mit.edu/jxiao/SUN/包含13万的图像的数据集。
9、MSRA-MM
http://research.microsoft.com/en-us/projects/msrammdata/ 包含100万的图像,23000视频;微软亚洲研究院出品,质量应该有保障。
中国是一个“数据大国”,中国的数据开放在政府部门以北京、上海等地为首,陆续开放了交通、天气等数据集;在企业中以新浪微博等为首,开放了真实、有效的数据给研究人员提供了极大的便利;但就计算机视觉领域来说,国内数据集的开放水平和国外相比仍有一定差距。希望国内相关企业和组织能够开放更多优秀的数据集,促进相关行业研究进展,提升中国在相关研究领域的影响力,为推动全人类科学技术的进步贡献自己的一份力量。
1.搜狗实验室数据集:
http://www.sogou.com/labs/dl/p.html
互联网图片库来自sogou图片搜索所索引的部分数据。其中收集了包括人物、动物、建筑、机械、风景、运动等类别,总数高达2,836,535张图片。对于每张图片,数据集中给出了图片的原图、缩略图、所在网页以及所在网页中的相关文本。200多G
2
http://www.imageclef.org/
IMAGECLEF致力于位图片相关领域提供一个基准(检索、分类、标注等等) Cross Language Evaluation Forum (CLEF) 。从2003年开始每年举行一次比赛.
http://staff.science.uva.nl/~xirong/index.php?n=Main.Dataset
3
Xiaorong Li 维护的数据集。PhD ,Intelligent Systems Lab Amsterdam.research on video and image retrieval.
- Flickr-3.5M: A collection of 3.5 million social-tagged images.
- Social20: A ground-truth set for tag-based social image retrieval.
- Biconcepts2012test: A ground-truth set for retrieving bi-concepts (concept pairs) in unlabeled images.
- neg4free: A set of negative examples automatically harvested from social-tagged images for 20 PASCAL VOC concepts.
http://www.svcl.ucsd.edu/projects/crossmodal/
5
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
To our knowledge, this is the largest real-world web image dataset comprising over 269,000 images with over 5,000 user-provided tags, and ground-truth of 81 concepts for the entire dataset. The dataset is much larger than the popularly available Corel and Caltech 101 datasets. Though some datasets comprise over 3 million images, they only have ground-truth for a small fraction of images. Our proposed NUS-WIDE dataset has the ground-truth for the entire dataset.
6.
http://www.cs.washington.edu/research/imagedatabase/
7.
http://lear.inrialpes.fr/~jegou/data.php
Jegou的数据集,不过Jegou是专门做CBIR的,图像有ground truth,没有标注。
8.
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
vgg的osford building dataset。也是专门CBIR的数据。
9.
http://acmmm13.org/submissions/call-for-multimedia-grand-challenge-solutions/msr-bing-grand-challenge-on-image-retrieval-scientific-track/
The dataset for the Microsoft Image Grand Challenge on Image Retrieval
另外介绍cvpaper上的整理的数据集
http://www.cvpapers.com/index.html
Participate in Reproducible Research
Detection
-
PASCAL VOC 2009 dataset
- Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets LabelMe dataset
- LabelMe is a web-based image annotation tool that allows researchers to label images and share the annotations with the rest of the community. If you use the database, we only ask that you contribute to it, from time to time, by using the labeling tool. BioID Face Detection Database
- 1521 images with human faces, recorded under natural conditions, i.e. varying illumination and complex background. The eye positions have been set manually. CMU/VASC & PIE Face dataset Yale Face dataset Caltech
- Cars, Motorcycles, Airplanes, Faces, Leaves, Backgrounds Caltech 101
- Pictures of objects belonging to 101 categories Caltech 256
- Pictures of objects belonging to 256 categories Daimler Pedestrian Detection Benchmark
- 15,560 pedestrian and non-pedestrian samples (image cut-outs) and 6744 additional full images not containing pedestrians for bootstrapping. The test set contains more than 21,790 images with 56,492 pedestrian labels (fully visible or partially occluded), captured from a vehicle in urban traffic. MIT Pedestrian dataset
- CVC Pedestrian Datasets CVC Pedestrian Datasets
- CBCL Pedestrian Database MIT Face dataset
- CBCL Face Database MIT Car dataset
- CBCL Car Database MIT Street dataset
- CBCL Street Database INRIA Person Data Set
- A large set of marked up images of standing or walking people INRIA car dataset
- A set of car and non-car images taken in a parking lot nearby INRIA INRIA horse dataset
- A set of horse and non-horse images H3D Dataset
- 3D skeletons and segmented regions for 1000 people in images HRI RoadTraffic dataset
- A large-scale vehicle detection dataset BelgaLogos
- 10000 images of natural scenes, with 37 different logos, and 2695 logos instances, annotated with a bounding box. FlickrBelgaLogos
- 10000 images of natural scenes grabbed on Flickr, with 2695 logos instances cut and pasted from the BelgaLogos dataset. FlickrLogos-32
- The dataset FlickrLogos-32 contains photos depicting logos and is meant for the evaluation of multi-class logo detection/recognition as well as logo retrieval methods on real-world images. It consists of 8240 images downloaded from Flickr. TME Motorway Dataset
- 30000+ frames with vehicle rear annotation and classification (car and trucks) on motorway/highway sequences. Annotation semi-automatically generated using laser-scanner data. Distance estimation and consistent target ID over time available. PHOS (Color Image Database for illumination invariant feature selection)
- Phos is a color image database of 15 scenes captured under different illumination conditions. More particularly, every scene of the database contains 15 different images: 9 images captured under various strengths of uniform illumination, and 6 images under different degrees of non-uniform illumination. The images contain objects of different shape, color and texture and can be used for illumination invariant feature detection and selection. CaliforniaND: An Annotated Dataset For Near-Duplicate Detection In Personal Photo Collections
- California-ND contains 701 photos taken directly from a real user's personal photo collection, including many challenging non-identical near-duplicate cases, without the use of artificial image transformations. The dataset is annotated by 10 different subjects, including the photographer, regarding near duplicates.
Classification
-
PASCAL VOC 2009 dataset
- Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets Caltech
- Cars, Motorcycles, Airplanes, Faces, Leaves, Backgrounds Caltech 101
- Pictures of objects belonging to 101 categories Caltech 256
- Pictures of objects belonging to 256 categories ETHZ Shape Classes
- A dataset for testing object class detection algorithms. It contains 255 test images and features five diverse shape-based classes (apple logos, bottles, giraffes, mugs, and swans). Flower classification data sets
- 17 Flower Category Dataset Animals with attributes
- A dataset for Attribute Based Classification. It consists of 30475 images of 50 animals classes with six pre-extracted feature representations for each image. Stanford Dogs Dataset
- Dataset of 20,580 images of 120 dog breeds with bounding-box annotation, for fine-grained image categorization.
Recognition
-
Face and Gesture Recognition Working Group FGnet
- Face and Gesture Recognition Working Group FGnet Feret
- Face and Gesture Recognition Working Group FGnet PUT face
- 9971 images of 100 people Labeled Faces in the Wild
- A database of face photographs designed for studying the problem of unconstrained face recognition Urban scene recognition
- Traffic Lights Recognition, Lara's public benchmarks. PubFig: Public Figures Face Database
- The PubFig database is a large, real-world face dataset consisting of 58,797 images of 200 people collected from the internet. Unlike most other existing face datasets, these images are taken in completely uncontrolled situations with non-cooperative subjects. YouTube Faces
- The data set contains 3,425 videos of 1,595 different people. The shortest clip duration is 48 frames, the longest clip is 6,070 frames, and the average length of a video clip is 181.3 frames. MSRC-12: Kinect gesture data set
- The Microsoft Research Cambridge-12 Kinect gesture data set consists of sequences of human movements, represented as body-part locations, and the associated gesture to be recognized by the system. QMUL underGround Re-IDentification (GRID) Dataset
- This dataset contains 250 pedestrian image pairs + 775 additional images captured in a busy underground station for the research on person re-identification. Person identification in TV series
- Face tracks, features and shot boundaries from our latest CVPR 2013 paper. It is obtained from 6 episodes of Buffy the Vampire Slayer and 6 episodes of Big Bang Theory. ChokePoint Dataset
- ChokePoint is a video dataset designed for experiments in person identification/verification under real-world surveillance conditions. The dataset consists of 25 subjects (19 male and 6 female) in portal 1 and 29 subjects (23 male and 6 female) in portal 2.
Tracking
-
BIWI Walking Pedestrians dataset
- Walking pedestrians in busy scenarios from a bird eye view "Central" Pedestrian Crossing Sequences
- Three pedestrian crossing sequences Pedestrian Mobile Scene Analysis
- The set was recorded in Zurich, using a pair of cameras mounted on a mobile platform. It contains 12'298 annotated pedestrians in roughly 2'000 frames. Head tracking
- BMP image sequences. KIT AIS Dataset
- Data sets for tracking vehicles and people in aerial image sequences. MIT Traffic Data Set
- MIT traffic data set is for research on activity analysis and crowded scenes. It includes a traffic video sequence of 90 minutes long. It is recorded by a stationary camera.
Segmentation
-
Image Segmentation with A Bounding Box Prior dataset
- Ground truth database of 50 images with: Data, Segmentation, Labelling - Lasso, Labelling - Rectangle PASCAL VOC 2009 dataset
- Classification/Detection Competitions, Segmentation Competition, Person Layout Taster Competition datasets Motion Segmentation and OBJCUT data
- Cows for object segmentation, Five video sequences for motion segmentation Geometric Context Dataset
- Geometric Context Dataset: pixel labels for seven geometric classes for 300 images Crowd Segmentation Dataset
- This dataset contains videos of crowds and other high density moving objects. The videos are collected mainly from the BBC Motion Gallery and Getty Images website. The videos are shared only for the research purposes. Please consult the terms and conditions of use of these videos from the respective websites. CMU-Cornell iCoseg Dataset
- Contains hand-labelled pixel annotations for 38 groups of images, each group containing a common foreground. Approximately 17 images per group, 643 images total. Segmentation evaluation database
- 200 gray level images along with ground truth segmentations The Berkeley Segmentation Dataset and Benchmark
- Image segmentation and boundary detection. Grayscale and color segmentations for 300 images, the images are divided into a training set of 200 images, and a test set of 100 images. Weizmann horses
- 328 side-view color images of horses that were manually segmented. The images were randomly collected from the WWW. Saliency-based video segmentation with sequentially updated priors
- 10 videos as inputs, and segmented image sequences as ground-truth
Foreground/Background
-
Wallflower Dataset
- For evaluating background modelling algorithms Foreground/Background Microsoft Cambridge Dataset
- Foreground/Background segmentation and Stereo dataset from Microsoft Cambridge Stuttgart Artificial Background Subtraction Dataset
- The SABS (Stuttgart Artificial Background Subtraction) dataset is an artificial dataset for pixel-wise evaluation of background models.
Saliency Detection (source)
-
AIM
- 120 Images / 20 Observers (Neil D. B. Bruce and John K. Tsotsos 2005). LeMeur
- 27 Images / 40 Observers (O. Le Meur, P. Le Callet, D. Barba and D. Thoreau 2006). Kootstra
- 100 Images / 31 Observers (Kootstra, G., Nederveen, A. and de Boer, B. 2008). DOVES
- 101 Images / 29 Observers (van der Linde, I., Rajashekar, U., Bovik, A.C., Cormack, L.K. 2009). Ehinger
- 912 Images / 14 Observers (Krista A. Ehinger, Barbara Hidalgo-Sotelo, Antonio Torralba and Aude Oliva 2009). NUSEF
- 758 Images / 75 Observers (R. Subramanian, H. Katti, N. Sebe1, M. Kankanhalli and T-S. Chua 2010). JianLi
- 235 Images / 19 Observers (Jian Li, Martin D. Levine, Xiangjing An and Hangen He 2011). Extended Complex Scene Saliency Dataset (ECSSD)
- ECSSD contains 1000 natural images with complex foreground or background. For each image, the ground truth mask of salient object(s) is provided.
Video Surveillance
-
CAVIAR
- For the CAVIAR project a number of video clips were recorded acting out the different scenarios of interest. These include people walking alone, meeting with others, window shopping, entering and exitting shops, fighting and passing out and last, but not least, leaving a package in a public place. ViSOR
- ViSOR contains a large set of multimedia data and the corresponding annotations.
Multiview
-
3D Photography Dataset
- Multiview stereo data sets: a set of images Multi-view Visual Geometry group's data set
- Dinosaur, Model House, Corridor, Aerial views, Valbonne Church, Raglan Castle, Kapel sequence Oxford reconstruction data set (building reconstruction)
- Oxford colleges Multi-View Stereo dataset (Vision Middlebury)
- Temple, Dino Multi-View Stereo for Community Photo Collections
- Venus de Milo, Duomo in Pisa, Notre Dame de Paris IS-3D Data
- Dataset provided by Center for Machine Perception CVLab dataset
- CVLab dense multi-view stereo image database 3D Objects on Turntable
- Objects viewed from 144 calibrated viewpoints under 3 different lighting conditions Object Recognition in Probabilistic 3D Scenes
- Images from 19 sites collected from a helicopter flying around Providence, RI. USA. The imagery contains approximately a full circle around each site. Multiple cameras fall dataset
- 24 scenarios recorded with 8 IP video cameras. The first 22 first scenarios contain a fall and confounding events, the last 2 ones contain only confounding events.
Action
-
UCF Sports Action Dataset
- This dataset consists of a set of actions collected from various sports which are typically featured on broadcast television channels such as the BBC and ESPN. The video sequences were obtained from a wide range of stock footage websites including BBC Motion gallery, and GettyImages. UCF Aerial Action Dataset
- This dataset features video sequences that were obtained using a R/C-controlled blimp equipped with an HD camera mounted on a gimbal.The collection represents a diverse pool of actions featured at different heights and aerial viewpoints. Multiple instances of each action were recorded at different flying altitudes which ranged from 400-450 feet and were performed by different actors. UCF YouTube Action Dataset
- It contains 11 action categories collected from YouTube. Weizmann action recognition
- Walk, Run, Jump, Gallop sideways, Bend, One-hand wave, Two-hands wave, Jump in place, Jumping Jack, Skip. UCF50
- UCF50 is an action recognition dataset with 50 action categories, consisting of realistic videos taken from YouTube. ASLAN
- The Action Similarity Labeling (ASLAN) Challenge. MSR Action Recognition Datasets
- The dataset was captured by a Kinect device. There are 12 dynamic American Sign Language (ASL) gestures, and 10 people. Each person performs each gesture 2-3 times. KTH Recognition of human actions
- Contains six types of human actions (walking, jogging, running, boxing, hand waving and hand clapping) performed several times by 25 subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors with different clothes and indoors. Hollywood-2 Human Actions and Scenes dataset
- Hollywood-2 datset contains 12 classes of human actions and 10 classes of scenes distributed over 3669 video clips and approximately 20.1 hours of video in total. Collective Activity Dataset
- This dataset contains 5 different collective activities : crossing, walking, waiting, talking, and queueing and 44 short video sequences some of which were recorded by consumer hand-held digital camera with varying view point. Olympic Sports Dataset
- The Olympic Sports Dataset contains YouTube videos of athletes practicing different sports. SDHA 2010
- Surveillance-type videos VIRAT Video Dataset
- The dataset is designed to be realistic, natural and challenging for video surveillance domains in terms of its resolution, background clutter, diversity in scenes, and human activity/event categories than existing action recognition datasets. HMDB: A Large Video Database for Human Motion Recognition
- Collected from various sources, mostly from movies, and a small proportion from public databases, YouTube and Google videos. The dataset contains 6849 clips divided into 51 action categories, each containing a minimum of 101 clips. Stanford 40 Actions Dataset
- Dataset of 9,532 images of humans performing 40 different actions, annotated with bounding-boxes. 50Salads dataset
- Fully annotated dataset of RGB-D video data and data from accelerometers attached to kitchen objects capturing 25 people preparing two mixed salads each (4.5h of annotated data). Annotated activities correspond to steps in the recipe and include phase (pre-/ core-/ post) and the ingredient acted upon.
Human pose/Expression
-
AFEW (Acted Facial Expressions In The Wild)/SFEW (Static Facial Expressions In The Wild)
- Dynamic temporal facial expressions data corpus consisting of close to real world environment extracted from movies. ETHZ CALVIN Dataset
Image stitching
-
IPM Vision Group Image Stitching datasets
- Images and parameters for registeration
Medical
-
VIP Laparoscopic / Endoscopic Dataset
- Collection of endoscopic and laparoscopic (mono/stereo) videos and images
Misc
-
Zurich Buildings Database
- ZuBuD Image Database contains over 1005 images about Zurich city building. Color Name Data Sets Mall dataset
- The mall dataset was collected from a publicly accessible webcam for crowd counting and activity profiling research. QMUL Junction Dataset
- A busy traffic dataset for research on activity analysis and behaviour understanding.
CVOnline的数据集
http://homepages.inf.ed.ac.uk/rbf/CVonline/CVentry.htm
Index by Topic
- Action Databases
- Biological/Medical
- Face Databases
- Fingerprints
- General Images
- Gesture Databases
- Image, Video and Shape Database Retrieval
- Object Databases
- People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases
- Segmentation
- Surveillance
- Textures
- General Videos
- Other Collection Pages
- Miscellaneous Topics
Action Databases
- 50 Salads - fully annotated 4.5 hour dataset of RGB-D video + accelerometer data, capturing 25 people preparing two mixed salads each (Dundee University, Sebastian Stein)
- ASLAN Action similarity labeling challenge database (Orit Kliper-Gross)
- Berkeley MHAD: A Comprehensive Multimodal Human Action Database (Ferda Ofli)
- BEHAVE Interacting Person Video Data with markup (Scott Blunsden, Bob Fisher, Aroosha Laghaee)
- CVBASE06: annotated sports videos (Janez Pers)
- G3D - synchronised video, depth and skeleton data for 20 gaming actions captured with Microsoft Kinect (Victoria Bloom)
- Hollywood 3D - 650 3D action recognition in the wild videos, 14 action classes (Simon Hadfield)
- Human Actions and Scenes Dataset (Marcin Marszalek, Ivan Laptev, Cordelia Schmid)
- HumanEva: Synchronized Video and Motion Capture Dataset for Evaluation of Articulated Human Motion (Brown University)
- i3DPost Multi-View Human Action Datasets (Hansung Kim)
- i-LIDS video event image dataset (Imagery library for intelligent detection systems) (Paul Hosner)
- INRIA Xmas Motion Acquisition Sequences (IXMAS) (INRIA)
- JPL First-Person Interaction dataset - 7 types of human activity videos taken from a first-person viewpoint (Michael S. Ryoo, JPL)
- KTH human action recognition database (KTH CVAP lab)
- LIRIS human activities dataset - 2 cameras, annotated, depth images (Christian Wolf, et al)
- MuHAVi - Multicamera Human Action Video Data (Hossein Ragheb)
- Oxford TV based human interactions (Oxford Visual Geometry Group)
- Rochester Activities of Daily Living Dataset (Ross Messing)
- SDHA Semantic Description of Human Activities 2010 contest - aerial views (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
- SDHA Semantic Description of Human Activities 2010 contest - Human Interactions (Michael S. Ryoo, J. K. Aggarwal, Amit K. Roy-Chowdhury)
- TUM Kitchen Data Set of Everyday Manipulation Activities (Moritz Tenorth, Jan Bandouch)
- TV Human Interaction Dataset (Alonso Patron-Perez)
- Univ of Central Florida - Feature Films Action Dataset (Univ of Central Florida)
- Univ of Central Florida - YouTube Action Dataset (sports) (Univ of Central Florida)
- Univ of Central Florida - 50 Action Category Recognition in Realistic Videos (3 GB) (Kishore Reddy)
- UCF 101 action dataset 101 action classes, over 13k clips and 27 hours of video data (Univ of Central Florida)
- Univ of Central Florida - Sports Action Dataset (Univ of Central Florida)
- Univ of Central Florida - ARG Aerial camera, Rooftop camera and Ground camera (UCF Computer Vision Lab)
- UCR Videoweb Multi-camera Wide-Area Activities Dataset (Amit K. Roy-Chowdhury)
- Verona Social interaction dataset (Marco Cristani)
- Videoweb (multicamera) Activities Dataset (B. Bhanu, G. Denina, C. Ding, A. Ivers, A. Kamal, C. Ravishankar, A. Roy-Chowdhury, B. Varda)
- ViHASi: Virtual Human Action Silhouette Data (userID: VIHASI password: virtual$virtual) (Hossein Ragheb, Kingston University)
- WorkoutSU-10 Kinect dataset for exercise actions (Ceyhun Akgul)
- YouCook - 88 open-source YouTube cooking videos with annotations (Jason Corso)
- WVU Multi-view action recognition dataset (Univ. of West Virginia)
Biological/Medical
- Computed Tomography Emphysema Database (Lauge Sorensen)
- Dermoscopy images (Eric Ehrsam)
- DIADEM: Digital Reconstruction of Axonal and Dendritic Morphology Competition (Allen Institute for Brain Science et al)
- DIARETDB1 - Standard Diabetic Retinopathy Database (Lappeenranta Univ of Technology)
- DRIVE: Digital Retinal Images for Vessel Extraction (Univ of Utrecht)
- MiniMammographic Database (Mammographic Image Analysis Society)
- MIT CBCL Automated Mouse Behavior Recognition datasets (Nicholas Edelman)
- Retinal fundus images - Ground truth of vascular bifurcations and crossovers (Univ of Groningen)
- Spine and Cardiac data (Digital Imaging Group of London Ontario, Shuo Li)
- Univ of Central Florida - DDSM: Digital Database for Screening Mammography (Univ of Central Florida)
- VascuSynth - 120 3D vascular tree like structures with ground truth (Mengliu Zhao, Ghassan Hamarneh)
- York Cardiac MRI dataset (Alexander Andreopoulos)
Face Databases
- 3D Mask Attack Database (3DMAD) - 76500 frames of 17 persons using Kinect RGBD with eye positions (Sebastien Marcel)
- Audio-visual database for face and speaker recognition (Mobile Biometry MOBIO http://www.mobioproject.org/)
- BANCA face and voice database (Univ of Surrey)
- Binghampton Univ 3D static and dynamic facial expression database (Lijun Yin, Peter Gerhardstein and teammates)
- BioID face database (BioID group)
- Biwi 3D Audiovisual Corpus of Affective Communication - 1000 high quality, dynamic 3D scans of faces, recorded while pronouncing a set of English sentences.
- CMU Facial Expression Database (CMU/MIT)
- CMU/MIT Frontal Faces (CMU/MIT)
- CMU/MIT Frontal Faces (CMU/MIT)
- CMU Pose, Illumination, and Expression (PIE) Database (Simon Baker)
- CSSE Frontal intensity and range images of faces (Ajmal Mian)
- Face Recognition Grand Challenge datasets (FRVT - Face Recognition Vendor Test)
- FaceTracer Database - 15,000 faces (Neeraj Kumar, P. N. Belhumeur, and S. K. Nayar)
- FDDB: Face Detection Data set and Benchmark - studying unconstrained face detection (University of Massachusetts Computer Vision Laboratory)
- FG-Net Aging Database of faces at different ages (Face and Gesture Recognition Research Network)
- Facial Recognition Technology (FERET) Database (USA National Institute of Standards and Technology)
- Hong Kong Face Sketch Database
- Japanese Female Facial Expression (JAFFE) Database (Michael J. Lyons)
- LFW: Labeled Faces in the Wild - unconstrained face recognition. Re-labeled Faces in the Wild - original images, but aligned using "deep funneling" method. (University of Massachusetts, Amherst)
- Manchester Annotated Talking Face Video Dataset (Timothy Cootes)
- MIT Collation of Face Databases (Ethan Meyers)
- MORPH (Craniofacial Longitudinal Morphological Face Database) (University of North Carolina Wilmington)
- MIT CBCL Face Recognition Database (Center for Biological and Computational Learning)
- NIST mugshot identification database (USA National Institute of Standards and Technology)
- ORL face database: 40 people with 10 views (ATT Cambridge Labs)
- Oxford: faces, flowers, multi-view, buildings, object categories, motion segmentation, affine covariant regions, misc (Oxford Visual Geometry Group)
- PubFig: Public Figures Face Database (Neeraj Kumar, Alexander C. Berg, Peter N. Belhumeur, and Shree K. Nayar)
- SCface - Surveillance Cameras Face Database (Mislav Grgic, Kresimir Delac, Sonja Grgic, Bozidar Klimpak))
- Trondheim Kinect RGB-D Person Re-identification Dataset (Igor Barros Barbosa)
- UB KinFace Database - University of Buffalo kinship verification and recognition database
- XM2VTS Face video sequences (295): The extended M2VTS Database (XM2VTS) - (Surrey University)
- Yale Face Database - 11 expressions of 10 people (A. Georghaides)
- Yale Face Database B - 576 viewing conditions of 10 people (A. Georghaides)
Fingerprints
- FVC fingerpring verification competition 2002 dataset (University of Bologna)
- FVC fingerpring verification competition 2004 dataset (University of Bologna)
- FVC - a subset of FVC (Fingerprint Verification Competition) 2002 and 2004 fingerprint image databases, manually extracted minutiae data & associated documents (Umut Uludag)
- NIST fingerprint databases (USA National Institute of Standards and Technology)
- SPD2010 Fingerprint Singular Points Detection Competition (SPD 2010 committee)
General Images
- Aerial color image dataset (Swiss Federal Institute of Technology)
- AMOS: Archive of Many Outdoor Scenes (20+m) (Nathan Jacobs)
- Brown Univ Large Binary Image Database (Ben Kimia)
- Columbia Multispectral Image Database (F. Yasuma, T. Mitsunaga, D. Iso, and S.K. Nayar)
- HIPR2 Image Catalogue of different types of images (Bob Fisher et al)
- Hyperspectral images of natural scenes - 2002 (David H. Foster)
- Hyperspectral images of natural scenes - 2004 (David H. Foster)
- ImageNet Linguistically organised (WordNet) Hierarchical Image Database - 10E7 images, 15K categories (Li Fei-Fei, Jia Deng, Hao Su, Kai Li)
- ImageNet Large Scale Visual Recognition Challenge (Alex Berg, Jia Deng, Fei-Fei Li)
- OTCBVS Thermal Imagery Benchmark Dataset Collection (Ohio State Team)
- McGill Calibrated Colour Image Database (Adriana Olmos and Fred Kingdom)
- Tiny Images Dataset 79 million 32x32 color images (Fergus, Torralba, Freeman)
Gesture Databases
- FG-Net Aging Database of faces at different ages (Face and Gesture Recognition Research Network)
- Hand gesture and marine silhouettes (Euripides G.M. Petrakis)
- IDIAP Hand pose/gesture datasets (Sebastien Marcel)
- Sheffield gesture database - 2160 RGBD hand gesture sequences, 6 subjects, 10 gestures, 3 postures, 3 backgrounds, 2 illuminations (Ling Shao)
Image, Video and Shape Database Retrieval
- Brown Univ 25/99/216 Shape Databases (Ben Kimia)
- IAPR TC-12 Image Benchmark (Michael Grubinger)
- IAPR-TC12 Segmented and annotated image benchmark (SAIAPR TC-12): (Hugo Jair Escalante)
- ImageCLEF 2010 Concept Detection and Annotation Task (Stefanie Nowak)
- ImageCLEF 2011 Concept Detection and Annotation Task - multi-label classification challenge in Flickr photos
- CLEF-IP 2011 evaluation on patent images
- McGill 3D Shape Benchmark (Siddiqi, Zhang, Macrini, Shokoufandeh, Bouix, Dickinson)
- NIST SHREC 2010 - Shape Retrieval Contest of Non-rigid 3D Models (USA National Institute of Standards and Technology)
- NIST SHREC - other NIST retrieval contest databases and links (USA National Institute of Standards and Technology)
- NIST TREC Video Retrieval Evaluation Database (USA National Institute of Standards and Technology)
- Princeton Shape Benchmark (Princeton Shape Retrieval and Analysis Group)
- Queensland cross media dataset - millions of images and text documents for "cross-media" retrieval (Yi Yang)
- TOSCA 3D shape database (Bronstein, Bronstein, Kimmel)
Object Databases
- 2.5D/3D Datasets of various objects and scenes (Ajmal Mian)
- Amsterdam Library of Object Images (ALOI): 100K views of 1K objects (University of Amsterdam/Intelligent Sensory Information Systems)
- Caltech 101 (now 256) category object recognition database (Li Fei-Fei, Marco Andreeto, Marc'Aurelio Ranzato)
- Columbia COIL-100 3D object multiple views (Columbia University)
- Densely sampled object views: 2500 views of 2 objects, eg for view-based recognition and modeling (Gabriele Peters, Universiteit Dortmund)
- German Traffic Sign Detection Benchmark (Ruhr-Universitat Bochum)
- GRAZ-02 Database (Bikes, cars, people) (A. Pinz)
- Linkoping 3D Object Pose Estimation Database (Fredrik Viksten and Per-Erik Forssen)
- Microsoft Object Class Recognition image databases (Antonio Criminisi, Pushmeet Kohli, Tom Minka, Carsten Rother, Toby Sharp, Jamie Shotton, John Winn)
- Microsoft salient object databases (labeled by bounding boxes) (Liu, Sun Zheng, Tang, Shum)
- MIT CBCL Car Data (Center for Biological and Computational Learning)
- MIT CBCL StreetScenes Challenge Framework: (Stan Bileschi)
- NEC Toy animal object recognition or categorization database (Hossein Mobahi)
- NORB 50 toy image database (NYU)
- PASCAL Image Database (motorbikes, cars, cows) (PASCAL Consortium)
- PASCAL 2007 Challange Image Database (motorbikes, cars, cows) (PASCAL Consortium)
- PASCAL 2008 Challange Image Database (PASCAL Consortium)
- PASCAL 2009 Challange Image Database (PASCAL Consortium)
- PASCAL 2010 Challange Image Database (PASCAL Consortium)
- PASCAL 2011 Challange Image Database (PASCAL Consortium)
- PASCAL 2012 Challange Image Database Category classification, detection, and segmentation, and still-image action classification (PASCAL Consortium)
- UIUC Car Image Database (UIUC)
- UIUC Dataset of 3D object categories (S. Savarese and L. Fei-Fei)
- Venezia 3D object-in-clutter recognition and segmentation (Emanuele Rodola)
People, Pedestrian, Eye/Iris, Template Detection/Tracking Databases
- 3D KINECT Gender Walking data base (L. Igual, A. Lapedriza, R. Borràs from UB, CVC and UOC, Spain)
- Caltech Pedestrian Dataset (P. Dollar, C. Wojek, B. Schiele and P. Perona)
- CASIA gait database (Chinese Academy of Sciences)
- CASIA-IrisV3 (Chinese Academy of Sciences, T. N. Tan, Z. Sun)
- CAVIAR project video sequences with tracking and behavior ground truth (CAVIAR team/Edinburgh University - EC project IST-2001-37540)
- Daimler Pedestrian Detection Benchmark 21790 images with 56492 pedestrians plus empty scenes (M. Enzweiler, D. M. Gavrila)
- Driver Monitoring Video Dataset (RobeSafe + Jesus Nuevo-Chiquero)
- Edinburgh overhead camera person tracking dataset (Bob Fisher, Bashia Majecka, Gurkirt Singh, Rowland Sillito)
- Eyetracking database summary (Stefan Winkler)
- HAT database of 27 human attributes (Gaurav Sharma, Frederic Jurie)
- INRIA Person Dataset (Navneet Dalal)
- ISMAR09 ground truth video dataset for template-based (i.e. planar) tracking algorithms (Sebastian Lieberknecht)
- MIT CBCL Pedestrian Data (Center for Biological and Computational Learning)
- MIT eye tracking database (1003 images) (Judd et al)
- Notre Dame Iris Image Dataset (Patrick J. Flynn)
- PETS 2009 Crowd Challange dataset (Reading University & James Ferryman)
- PETS: Performance Evaluation of Tracking and Surveillance (Reading University & James Ferryman)
- PETS Winter 2009 workshop data (Reading University & James Ferryman)
- UBIRIS: Noisy Visible Wavelength Iris Image Databases (University of Beira)
- Univ of Central Florida - Crowd Dataset (Saad Ali)
- Univ of Central Florida - Crowd Flow Segmentation datasets (Saad Ali)
- York Univ Eye Tracking Dataset (120 images) (Neil Bruce)
Segmentation
- Alpert et al. Segmentation evaluation database (Sharon Alpert, Meirav Galun, Ronen Basri, Achi Brandt)
- Berkeley Segmentation Dataset and Benchmark (David Martin and Charless Fowlkes)
- GrabCut Image database (C. Rother, V. Kolmogorov, A. Blake, M. Brown)
- LabelMe images database and online annotation tool (Bryan Russell, Antonio Torralba, Kevin Murphy, William Freeman)
Surveillance
- AVSS07: Advanced Video and Signal based Surveillance 2007 datasets (Andrea Cavallaro)
- ETISEO Video Surveillance Download Datasets (INRIA Orion Team and others)
- Heriot Watt Summary of datasets for human tracking and surveillance (Zsolt Husz)
- SPEVI: Surveillance Performance EValuation Initiative (Queen Mary University London)
- Udine Trajectory-based anomalous event detection dataset - synthetic trajectory datasets with outliers (Univ of Udine Artificial Vision and Real Time Systems Laboratory)
Textures
- Color texture images by category (textures.forrest.cz)
- Columbia-Utrecht Reflectance and Texture Database (Columbia & Utrecht Universities)
- DynTex: Dynamic texture database (Renaud Piteri, Mark Huiskes and Sandor Fazekas)
- Oulu Texture Database (Oulu University)
- Prague Texture Segmentation Data Generator and Benchmark (Mikes, Haindl)
- Uppsala texture dataset of surfaces and materials - fabrics, grains, etc.
- Vision Texture (MIT Media Lab)
General Videos
- Large scale YouTube video dataset - 156,823 videos (2,907,447 keyframes) crawled from YouTube videos (Yi Yang)
Other Collections
- CANTATA Video and Image Database Index site (Multitel)
- Computer Vision Homepage list of test image databases (Carnegie Mellon Univ)
- ETHZ various, including 3D head pose, shape classes, pedestrians, pedestrians, buildings (ETH Zurich, Computer Vision Lab)
- Leibe's Collection of people/vehicle/object databases (Bastian Leibe)
- Lotus Hill Image Database Collection with Ground Truth (Sealeen Ren, Benjamin Yao, Michael Yang)
- Oxford Misc, including Buffy, Flowers, TV characters, Buildings, etc (Oxford Visual geometry Group)
- PEIPA Image Database Summary (Pilot European Image Processing Archive)
- Univ of Bern databases on handwriting, online documents, string edit and graph matching (Univ of Bern, Computer Vision and Artificial Intelligence)
- USC Annotated Computer Vision Bibliography database publication summary (Keith Price)
- USC-SIPI image databases: texture, aerial, favorites (eg. Lena) (USC Signal and Image Processing Institute)
Miscellaneous
-
- 3D mesh watermarking benchmark dataset (Guillaume Lavoue)
- Active Appearance Models datasets (Mikkel B. Stegmann)
- Aircraft tracking (Ajmal Mian)
- Cambridge Motion-based Segmentation and Recognition Dataset (Brostow, Shotton, Fauqueur, Cipolla)
- Catadioptric camera calibration images (Yalin Bastanlar)
- Chars74K dataset - 74 English and Kannada characters (Teo de Campos - t.decampos@surrey.ac.uk)
- COLD (COsy Localization Database) - place localization (Ullah, Pronobis, Caputo, Luo, and Jensfelt)
- Columbia Camera Response Functions: Database (DoRF) and Model (EMOR) (M.D. Grossberg and S.K. Nayar)
- Columbia Database of Contaminants' Patterns and Scattering Parameters (Jinwei Gu, Ravi Ramamoorthi, Peter Belhumeur, Shree Nayar)
- Dense outdoor correspondence ground truth datasets, for optical flow and local keypoint evaluation (Christoph Strecha)
- DTU controlled motion and lighting image dataset (135K images) (Henrik Aanaes)
- EISATS: .enpeda.. Image Sequence Analysis Test Site (Auckland University Multimedia Imaging Group)
- FlickrLogos-32 - 8240 images of 32 product logos (Stefan Romberg)
- Flowchart images (Allan Hanbury)
- Geometric Context - scene interpretation images (Derek Hoiem)
- Image/video quality assessment database summary (Stefan Winkler)
- INRIA feature detector evaluation sequences (Krystian Mikolajczyk)
- INRIA's PERCEPTION's database of images and videos gathered with several synchronized and calibrated cameras (INRIA Rhone-Alpes)
- INRIA's Synchronized and calibrated binocular/binaural data sets with head movements (INRIA Rhone-Alpes)
- KITTI dataset for stereo, optical flow and visual odometry (Geiger, Lenz, Urtasun)
- Large scale 3D point cloud data from terrestrial LiDAR scanning (Andreas Nuechter)
- Linkoping Rolling Shutter Rectification Dataset (Per-Erik Forssen and Erik Ringaby)
- Middlebury College stereo vision research datasets (Daniel Scharstein and Richard Szeliski)
- MPI-Sintel optical flow evaluation dataset (Michael Black)
- Multiview stereo images with laser based groundtruth (ESAT-PSI/VISICS,FGAN-FOM,EPFL/IC/ISIM/CVLab)
- The Cancer Imaging Archive (National Cancer Institute)
- NCI Cancer Image Archive - prostate images (National Cancer Institute)
- NIST 3D Interest Point Detection (Helin Dutagaci, Afzal Godil)
- NRCS natural resource/agricultural image database (USDA Natural Resources Conservation Service)
- Occlusion detection test data (Andrew Stein)
- The Open Video Project (Gary Marchionini, Barbara M. Wildemuth, Gary Geisler, Yaxiao Song)
- Pics 'n' Trails - Dataset of Continuously archived GPS and digital photos (Gamhewage Chaminda de Silva)
- PRINTART: Artistic images of prints of well known paintings, including detail annotations. A benchmark for automatic annotation and retrieval tasks with this database was published at ECCV. (Nuno Miguel Pinho da Silva)
- RAWSEEDS SLAM benchmark datasets (Rawseeds Project)
- Robotic 3D Scan Repository - 3D point clouds from robotic experiments of scenes (Osnabruck and Jacobs Universities)
- ROMA (ROad MArkings) : Image database for the evaluation of road markings extraction algorithms (Jean-Philippe Tarel, et al)
- Stuttgart Range Image Database - 66 views of 45 objects
- UCL Ground Truth Optical Flow Dataset (Oisin Mac Aodha)
- Univ of Genoa Datasets for disparity and optic flow evaluation (Manuela Chessa)
- Validation and Verification of Neural Network Systems (Francesco Vivarelli)
- VSD: Technicolor Violent Scenes Dataset - a collection of ground-truth files based on the extraction of violent events in movies
- WILD: Weather and Illumunation Database (S. Narasimhan, C. Wang. S. Nayar, D. Stolyarov, K. Garg, Y. Schechner, H. Peri)
http://www.multitel.be/cantata/
BOSS dataset
Website:
Datasets are available here.
Contact:
Catherine.LAMY-BERGOT@fr.thalesgroup.com
EMAV 2009
Website:
Datasets are available here:
http://www.emav09.org/
The objective of the EMAV 2009 (European Micro Aerial Vehicle Conference and Flight Competition) conference is to provide an effective and established forum for discussion and dissemination of original and recent advances in MAV technology. The conference program will consist of a theoretical part and a flight competition. We aim for submission of papers that address novel, challenging and innovative ideas, concepts or systems. We particularly encourage papers that go beyond MAV hardware, and address issues such as the collaboration of multiple MAVs, applications of computer vision, and non-GPS based navigation.
Contact:
info [-at-] emav2009.org
Caltech Pedestrian Dataset
Website:
Datasets are available here:
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
Contact:
pdollar[at]caltech.edu
NGSIM
Website:
Datasets are available here (registration is needed):
http://ngsim.fhwa.dot.gov/modules.php?op=modload&name=News&file=article&sid=4
Contact:
John.Halkias@fhwa.dot.gov
AMI Corpora
Website:
Datasets are available here (registration is needed)
http://corpus.amiproject.org/amicorpus/download/download
Contact:
machy@multitel.be
MORYNE - Traffic scenes mobile video acquisition
Website:
http://www.fp6-moryne.org/MORYNE aims at contributing to greater transport efficiency, increased transport safety and more environmental friendly transport by improving traffic management in an urban and sub-urban area.
Contact:
christophe.parisot(at)multitel.be
BEHAVE - Crowds
Website:
Datasets are available here:
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/CROWDS/index.html
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
CANTATA - Left Objects Dataset
Website:
http://www.multitel.be/~va/cantata/LeftObject/Contact:
desurmont@multitel.be
VISOR - Surveillance
Website:
Datasets are available here:
http://imagelab.ing.unimore.it/visor/
Contact:
vezzani.roberto@unimore.it
Traffic datasets from Institut fur Algorithmen und Kognitive Systemes
Website:
Sequences are available here:
http://i21www.ira.uka.de/image_sequences/
Contact:
Sabri Boughorbel (mailto:cedric.marchessoux@barco.com)
TRAFICON - Traffic jam
Website:
NoContact:
Wouter Favoreel, wf@traficon.com
CANDELA - Surveillance
Website:
Datasets are available here:
http://www.multitel.be/~va/candela/
Contact:
Xavier Desurmont, desurmont@multitel.be
OVVV - Virtual sequences
Website:
Datasets are available here:
http://development.objectvideo.com/
Contact:
Rick Koeleman, VDG-Security bv. rick@vdg-security.com
IBM - Tracking
Website:
http://domino.research.ibm.com/comm/research_projects.nsf/pages/s3.performanceevaluation.htmlContact:
Dimitrios Makris, d.makris@kingston.ac.uk
SPEVI: Multiple faces dataset
Website:
http://www.spevi.orgContact:
Xavier Desurmont, desurmont@multitel.be
SPEVI: Single face dataset
Website:
http://www.spevi.orgContact:
Xavier Desurmont, desurmont@multitel.be
SPEVI: Audiovisual people dataset
Website:
http://www.spevi.orgContact:
Xavier Desurmont, desurmont@multitel.be
ETISEO - Surveillance
Website:
Datasets are available here: (registration is needed)
http://www-sop.inria.fr/orion/ETISEO/
Contact:
francois.bremond@sophia.inria.fr
SELCAT - Level Crossing
Website:
These datasets have been realized during the SELCAT project.
http://www.levelcrossing.net/
Datasets are available here:
http://www.multitel.be/~va/selcat
Contact:
Caroline Machy, machy@multitel.be
BEHAVE - INTERACTION
Website:
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS - 2007 - REASON
Website:
Datasets ate available here:
http://www.pets2007.net/
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS - 2006 - ISCAPS
Website:
Datasets are available here:
http://www.pets2006.net/
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS - 2005 - WAMOP
Website:
Datasets are available here: (registration is needed)
http://www.vast.uccs.edu/~tboult/PETS05/
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS - ECCV'2004 - CAVIAR
Website:
http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
or http://www-prima.inrialpes.fr/PETS04/caviar_data.html
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS 2002
Website:
Datasets are available here:
http://www.cvg.cs.rdg.ac.uk/PETS2002/pets2002-db.html
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS 2001
Website:
Datasets are available here:
http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html
http://www.cvg.cs.rdg.ac.uk/cgi-bin/PETSMETRICS/page.cgi?dataset
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS 2000
Website:
ftp://ftp.pets.rdg.ac.uk/pub/PETS2000/Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
PETS
Website:
Website: http://www.cvg.rdg.ac.uk/slides/pets.htmlContact:
Dimitrios Makris, d.makris@kingston.ac.uk
I-LIDS - Surveillance
Website:
http://scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/video-based-detection-systems/i-lids/Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
MEDICAL
DDSM: Digital Database for Screening Mammography
Website:
Datasets are available here:
http://marathon.csee.usf.edu/Mammography/Database.html
Contact:
Cedric Marchessoux, cedric.marchessoux@barco.com
The Volume Library
Website:
Datasets are available here:
http://www9.informatik.uni-erlangen.de/External/vollib/
Contact:
Stefan Roettger (roettger@cs.fau.de) or Cedric Marchessoux (cedric.marchessoux@barco.com)
DICOM sample image sets
Website:
http://pubimage.hcuge.ch:8080
http://pubimage.hcuge.ch/
Contact:
Cedric Marchessoux (cedric.marchessoux@barco.com)
MyPACS.net, reference case manager
Website:
Datasets are available here:
http://www.MyPACS.net
Contact:
Cedric Marchessoux (cedric.marchessoux@barco.com)
The NCIA (National Cancer Imaging Archive from National Cancer Institute) data base
Website:
Datasets are available here:
https://imaging.nci.nih.gov/ncia/
Contact:
Cedric Marchessoux (cedric.marchessoux@barco.com)
Conventional x-ray mammography data base
Website:
No official website, via Elizabeth Krupinski (krupinski@radiology.arizona.edu)Contact:
Elizabeth Krupinski (krupinski@radiology.arizona.edu) or Cedric Marchessoux (cedric.marchessoux@barco.com)
JSRT - Standard Digital Image Database (X-RAY)
Website:
Datasets are available here:
http://www.jsrt.or.jp/web_data/english03.html
Contact:
Cedric Marchessoux (cedric.marchessoux@barco.com)
CONSUMER APPLICATIONS
ICCV 2007 - Optical Flow Performance Evaluation
Website:
Dataset can be found here: http://vision.middlebury.edu/flow/data/Contact:
Basket-ball - APIDIS
Website:
Sequences are available here: http://www.apidis.org/Public/
This page gives access to the first acquisition campaign of basket ball data during the APIDIS European project.
Contact:
christophe.devleeschouwer(at)uclouvain.be or Damien.Delannay(at)uclouvain.be
Freesound
Website:
Datasets are available here:
http://freesound.iua.upf.edu/
Contact:
The International Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL) Project
Website:
Datasets are available here:
http://www.music-ir.org/evaluation/
Contact:
Public domain
Website:
Datasets are available here:
http://www.publicdomaintorrents.com/ Lien bittorrent
Contact:
Sabri Boughorbel
Phillips Internal dataset
Website:
noneContact:
Sabri Boughorbel
RWC Music Database
Website:
Datasets are available here:
http://staff.aist.go.jp/m.goto/RWC-MDB/
Contact:
CVBASE - 2006
Website:
Datasets are available here:
http://vision.fe.uni-lj.si/cvbase06/downloads.html
Contact:
Xavier Desurmont, desurmont@multitel.be
VSPETS - 2003 - INMOVE
Website:
Datasets are available here:
ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
Trictrac
Website:
http://www.multitel.be/trictrac/?mod=3Contact:
Xavier Desurmont, desurmont@multitel.be
OTHERS
PETS - 2009
Contact:
datasets@pets2009.net
IPPR : contest motion segmentation dataset
Contact:
GavabDB : 3D face database
Contact:
3D_RMA : 3D database
Contact:
beumier@elec.rma.ac.be
Actions as Space-Time Shapes
Contact:
lena.gorelick@weizmann.ac.il
KTH - Recognition of human actions
Contact:
laptev(at)nada.kth.se
PLIA2
Contact:
MuHAVi: Multicamera Human Action Video Data
Contact:
Sergio.Velastin@kingston.ac.uk
ViHASi: Virtual Human Action Silhouette Data
Contact:
Sergio.Velastin@kingston.ac.uk
Daimler - Pedestrian Dataset
Contact:
gavrila(at)science.uva.nl
TERRASCOPE
Contact:
OTCBVS Benchmark Dataset Collection
Contact:
otcbvs-bench@cse.ohio-state.edu.
Eyes and faces dataset
Contact:
Quentin Besnehard, quentin.besnehard@barco.com or Cedric Marchessoux, cedric.marchessoux@barco.com
Anti Aliased Text Dataset
Contact:
Quentin Besnehard, quentin.besnehard@barco.com or Cedric Marchessoux, cedric.marchessoux@barco.com
Aliased Text Dataset
Contact:
Quentin Besnehard, quentin.besnehard@barco.com; C?dric Marchessoux, cedric.marchessoux@barco.com
PETS - ICVS - 2003 - FGnet
Contact:
Dimitrios Makris, d.makris@kingston.ac.uk
RESSOURCES AND LINKS
Medical datasets
TRECVID
Image Datasets
Half-Life 2 mods
Scenario game
The USC-SIPI Image Database
Computer vision test images
CVonline: The Evolving, Distributed, Non-Proprietary, On-Line Compendium of Computer Vision
好玩的数据下载
链接地址
国内数据:链接:http://pan.baidu.com/s/1i5nyjBn 密码:26bm
好玩的数据集:链接:http://pan.baidu.com/s/1bSDIEi 密码:25zr
微软数据:链接:http://pan.baidu.com/s/1bpmo6uV 密码:286q
微博数据集:链接:http://pan.baidu.com/s/1jHCOwCI 密码:x58f
遥感影像库:链接:http://pan.baidu.com/s/1dF63kDr 密码:7tnh
1990-2016年股票数据:链接:http://pan.baidu.com/s/1i44IQ3N 密码:o9hj
各大企业电话邮箱创立时间:链接:http://pan.baidu.com/s/1i5PXPCp 密码:m4mo
98-09年经济普查:链接:http://pan.baidu.com/s/1o8wbzsu 密码:a093
各国各产业资产数据:链接:http://pan.baidu.com/s/1jI19qmi 密码:on7y
1953-2013统计年鉴:链接:http://pan.baidu.com/s/1mh5sHuC 密码:7ije
2015全国人口普查:链接:http://pan.baidu.com/s/1i5mIj6t 密码:yad1
facebook大数据:链接:http://pan.baidu.com/s/1jHRb3Wq 密码:aezb
taiwind数据:链接:http://pan.baidu.com/s/1kV8YKXh 密码:984g
全球社交媒体:链接:http://pan.baidu.com/s/1qXXAQvU 密码:c8qc
京东2015自营:链接:http://pan.baidu.com/s/1i56uYFz 密码:oj4v
维基百科数据:链接:http://pan.baidu.com/s/1c2gMLUw 密码:4f3b
kaggle竞赛数据:链接:http://pan.baidu.com/s/1pLDAx6N 密码:i10y
生物数据:链接:http://pan.baidu.com/s/1pLLHQwr 密码:zfjs
nasa数据:链接:http://pan.baidu.com/s/1i50pw49 密码:aawf
基因组数据:链接:http://pan.baidu.com/s/1pLTPwtP 密码:vgs8
新闻数据:链接:http://pan.baidu.com/s/1hsHSyzE 密码:pey9
ImageNet数据:链接:http://pan.baidu.com/s/1c243tks 密码:mk1k
百肚数据:链接:http://pan.baidu.com/s/1hsr4ayg 密码:k76p
图像数据:链接:http://pan.baidu.com/s/1jHW1kAa 密码:qztt
google数据:链接:http://pan.baidu.com/s/1bpsugGn 密码:8bt4
分类练习数据:链接:http://pan.baidu.com/s/1pLuD3wJ 密码:4pxf
各大联赛世界杯数据:链接:http://pan.baidu.com/s/1jIO9TR4 密码:1v1q
自动驾驶数据:链接:http://pan.baidu.com/s/1miFcv5e 密码:y7uj
最后
以上就是开朗洋葱为你收集整理的【数据集】计算机视觉,深度学习,数据挖掘数据集整理MEDICALCONSUMER APPLICATIONSOTHERSRESSOURCES AND LINKS好玩的数据下载的全部内容,希望文章能够帮你解决【数据集】计算机视觉,深度学习,数据挖掘数据集整理MEDICALCONSUMER APPLICATIONSOTHERSRESSOURCES AND LINKS好玩的数据下载所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复