我是靠谱客的博主 无聊蛋挞,这篇文章主要介绍Carla自动驾驶强化学习carla强化学习,现在分享给大家,希望可以做个参考。

Carla自动驾驶强化学习

  • carla强化学习

carla强化学习

来自youtube大神的代码。
自己首先复制一下项目旨在跑通,然后再精读。
自己在tf2.0环境下一直没有跑通,于是改为
因为自己下载的carla版本限制了python只能用3.7

复制代码
1
2
3
4
5
6
7
conda create -n carla python=3.7 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple tensorflow==1.14 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple keras==2.2.5
复制代码
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import glob import os import sys import random import time import numpy as np import cv2 import math from collections import deque from keras.applications.xception import Xception from keras.layers import Dense, GlobalAveragePooling2D from keras.optimizers import Adam from keras.models import Model from keras.callbacks import TensorBoard import tensorflow as tf import keras.backend.tensorflow_backend as backend from threading import Thread from tqdm import tqdm try: sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % ( sys.version_info.major, sys.version_info.minor, 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0]) except IndexError: pass import carla SHOW_PREVIEW = False IM_WIDTH = 640 IM_HEIGHT = 480 SECONDS_PER_EPISODE = 10 REPLAY_MEMORY_SIZE = 5_000 MIN_REPLAY_MEMORY_SIZE = 1_000 MINIBATCH_SIZE = 16 PREDICTION_BATCH_SIZE = 1 TRAINING_BATCH_SIZE = MINIBATCH_SIZE // 4 UPDATE_TARGET_EVERY = 5 MODEL_NAME = "Xception" MEMORY_FRACTION = 0.4 MIN_REWARD = -200 EPISODES = 100 DISCOUNT = 0.99 epsilon = 1 EPSILON_DECAY = 0.95 ## 0.9975 99975 MIN_EPSILON = 0.001 AGGREGATE_STATS_EVERY = 10 # Own Tensorboard class class ModifiedTensorBoard(TensorBoard): # Overriding init to set initial step and writer (we want one log file for all .fit() calls) def __init__(self, **kwargs): super().__init__(**kwargs) self.step = 1 self.writer = tf.summary.FileWriter(self.log_dir) # Overriding this method to stop creating default log writer def set_model(self, model): pass # Overrided, saves logs with our step number # (otherwise every .fit() will start writing from 0th step) def on_epoch_end(self, epoch, logs=None): self.update_stats(**logs) # Overrided # We train for one batch only, no need to save anything at epoch end def on_batch_end(self, batch, logs=None): pass # Overrided, so won't close writer def on_train_end(self, _): pass # Custom method for saving own metrics # Creates writer, writes custom metrics and closes writer def update_stats(self, **stats): self._write_logs(stats, self.step) class CarEnv: SHOW_CAM = SHOW_PREVIEW STEER_AMT = 1.0 im_width = IM_WIDTH im_height = IM_HEIGHT front_camera = None def __init__(self): self.client = carla.Client("localhost", 2000) self.client.set_timeout(2.0) self.world = self.client.get_world() self.blueprint_library = self.world.get_blueprint_library() self.model_3 = self.blueprint_library.filter("model3")[0] def reset(self): self.collision_hist = [] self.actor_list = [] self.transform = random.choice(self.world.get_map().get_spawn_points()) self.vehicle = self.world.spawn_actor(self.model_3, self.transform) self.actor_list.append(self.vehicle) self.rgb_cam = self.blueprint_library.find('sensor.camera.rgb') self.rgb_cam.set_attribute("image_size_x", f"{self.im_width}") self.rgb_cam.set_attribute("image_size_y", f"{self.im_height}") self.rgb_cam.set_attribute("fov", f"110") transform = carla.Transform(carla.Location(x=2.5, z=0.7)) self.sensor = self.world.spawn_actor(self.rgb_cam, transform, attach_to=self.vehicle) self.actor_list.append(self.sensor) self.sensor.listen(lambda data: self.process_img(data)) self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) time.sleep(4) colsensor = self.blueprint_library.find("sensor.other.collision") self.colsensor = self.world.spawn_actor(colsensor, transform, attach_to=self.vehicle) self.actor_list.append(self.colsensor) self.colsensor.listen(lambda event: self.collision_data(event)) while self.front_camera is None: time.sleep(0.01) self.episode_start = time.time() self.vehicle.apply_control(carla.VehicleControl(throttle=0.0, brake=0.0)) return self.front_camera def collision_data(self, event): self.collision_hist.append(event) def process_img(self, image): i = np.array(image.raw_data) #print(i.shape) i2 = i.reshape((self.im_height, self.im_width, 4)) i3 = i2[:, :, :3] if self.SHOW_CAM: cv2.imshow("", i3) cv2.waitKey(1) self.front_camera = i3 def step(self, action): if action == 0: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=-1*self.STEER_AMT)) elif action == 1: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer= 0)) elif action == 2: self.vehicle.apply_control(carla.VehicleControl(throttle=1.0, steer=1*self.STEER_AMT)) v = self.vehicle.get_velocity() kmh = int(3.6 * math.sqrt(v.x**2 + v.y**2 + v.z**2)) if len(self.collision_hist) != 0: done = True reward = -200 elif kmh < 50: done = False reward = -1 else: done = False reward = 1 if self.episode_start + SECONDS_PER_EPISODE < time.time(): done = True return self.front_camera, reward, done, None class DQNAgent: def __init__(self): self.model = self.create_model() self.target_model = self.create_model() self.target_model.set_weights(self.model.get_weights()) self.replay_memory = deque(maxlen=REPLAY_MEMORY_SIZE) self.tensorboard = ModifiedTensorBoard(log_dir=f"logs/{MODEL_NAME}-{int(time.time())}") self.target_update_counter = 0 self.graph = tf.get_default_graph() self.terminate = False self.last_logged_episode = 0 self.training_initialized = False def create_model(self): base_model = Xception(weights=None, include_top=False, input_shape=(IM_HEIGHT, IM_WIDTH,3)) x = base_model.output x = GlobalAveragePooling2D()(x) predictions = Dense(3, activation="linear")(x) model = Model(inputs=base_model.input, outputs=predictions) model.compile(loss="mse", optimizer=Adam(lr=0.001), metrics=["accuracy"]) return model def update_replay_memory(self, transition): # transition = (current_state, action, reward, new_state, done) self.replay_memory.append(transition) def train(self): if len(self.replay_memory) < MIN_REPLAY_MEMORY_SIZE: return minibatch = random.sample(self.replay_memory, MINIBATCH_SIZE) current_states = np.array([transition[0] for transition in minibatch])/255 with self.graph.as_default(): current_qs_list = self.model.predict(current_states, PREDICTION_BATCH_SIZE) new_current_states = np.array([transition[3] for transition in minibatch])/255 with self.graph.as_default(): future_qs_list = self.target_model.predict(new_current_states, PREDICTION_BATCH_SIZE) X = [] y = [] for index, (current_state, action, reward, new_state, done) in enumerate(minibatch): if not done: max_future_q = np.max(future_qs_list[index]) new_q = reward + DISCOUNT * max_future_q else: new_q = reward current_qs = current_qs_list[index] current_qs[action] = new_q X.append(current_state) y.append(current_qs) log_this_step = False if self.tensorboard.step > self.last_logged_episode: log_this_step = True self.last_log_episode = self.tensorboard.step with self.graph.as_default(): self.model.fit(np.array(X)/255, np.array(y), batch_size=TRAINING_BATCH_SIZE, verbose=0, shuffle=False, callbacks=[self.tensorboard] if log_this_step else None) if log_this_step: self.target_update_counter += 1 if self.target_update_counter > UPDATE_TARGET_EVERY: self.target_model.set_weights(self.model.get_weights()) self.target_update_counter = 0 def get_qs(self, state): return self.model.predict(np.array(state).reshape(-1, *state.shape)/255)[0] def train_in_loop(self): X = np.random.uniform(size=(1, IM_HEIGHT, IM_WIDTH, 3)).astype(np.float32) y = np.random.uniform(size=(1, 3)).astype(np.float32) with self.graph.as_default(): self.model.fit(X,y, verbose=False, batch_size=1) self.training_initialized = True while True: if self.terminate: return self.train() time.sleep(0.01) if __name__ == '__main__': FPS = 60 # For stats ep_rewards = [-200] # For more repetitive results random.seed(1) np.random.seed(1) tf.set_random_seed(1) # Memory fraction, used mostly when trai8ning multiple agents gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=MEMORY_FRACTION) backend.set_session(tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))) # Create models folder if not os.path.isdir('models'): os.makedirs('models') # Create agent and environment agent = DQNAgent() env = CarEnv() # Start training thread and wait for training to be initialized trainer_thread = Thread(target=agent.train_in_loop, daemon=True) trainer_thread.start() while not agent.training_initialized: time.sleep(0.01) # Initialize predictions - forst prediction takes longer as of initialization that has to be done # It's better to do a first prediction then before we start iterating over episode steps agent.get_qs(np.ones((env.im_height, env.im_width, 3))) # Iterate over episodes for episode in tqdm(range(1, EPISODES + 1), ascii=True, unit='episodes'): #try: env.collision_hist = [] # Update tensorboard step every episode agent.tensorboard.step = episode # Restarting episode - reset episode reward and step number episode_reward = 0 step = 1 # Reset environment and get initial state current_state = env.reset() # Reset flag and start iterating until episode ends done = False episode_start = time.time() # Play for given number of seconds only while True: # This part stays mostly the same, the change is to query a model for Q values if np.random.random() > epsilon: # Get action from Q table action = np.argmax(agent.get_qs(current_state)) else: # Get random action action = np.random.randint(0, 3) # This takes no time, so we add a delay matching 60 FPS (prediction above takes longer) time.sleep(1/FPS) new_state, reward, done, _ = env.step(action) # Transform new continous state to new discrete state and count reward episode_reward += reward # Every step we update replay memory agent.update_replay_memory((current_state, action, reward, new_state, done)) current_state = new_state step += 1 if done: break # End of episode - destroy agents for actor in env.actor_list: actor.destroy() # Append episode reward to a list and log stats (every given number of episodes) ep_rewards.append(episode_reward) if not episode % AGGREGATE_STATS_EVERY or episode == 1: average_reward = sum(ep_rewards[-AGGREGATE_STATS_EVERY:])/len(ep_rewards[-AGGREGATE_STATS_EVERY:]) min_reward = min(ep_rewards[-AGGREGATE_STATS_EVERY:]) max_reward = max(ep_rewards[-AGGREGATE_STATS_EVERY:]) agent.tensorboard.update_stats(reward_avg=average_reward, reward_min=min_reward, reward_max=max_reward, epsilon=epsilon) # Save model, but only when min reward is greater or equal a set value if min_reward >= MIN_REWARD: agent.model.save(f'models/{MODEL_NAME}__{max_reward:_>7.2f}max_{average_reward:_>7.2f}avg_{min_reward:_>7.2f}min__{int(time.time())}.model') # Decay epsilon if epsilon > MIN_EPSILON: epsilon *= EPSILON_DECAY epsilon = max(MIN_EPSILON, epsilon) # Set termination flag for training thread and wait for it to finish agent.terminate = True trainer_thread.join() agent.model.save(f'models/{MODEL_NAME}__{max_reward:_>7.2f}max_{average_reward:_>7.2f}avg_{min_reward:_>7.2f}min__{int(time.time())}.model')

在这里插入图片描述

最后

以上就是无聊蛋挞最近收集整理的关于Carla自动驾驶强化学习carla强化学习的全部内容,更多相关Carla自动驾驶强化学习carla强化学习内容请搜索靠谱客的其他文章。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(88)

评论列表共有 0 条评论

立即
投稿
返回
顶部