概述
PCA是大家所熟知的降维算法,但是线性降维虽然简单,其局限性也很明显,难以实现高维数据在低维空间的可视化。
t-SNE是非线性的降维算法,能实现高维到低维的可视化映射,但因为涉及大量的条件概率、梯度下降等计算,时间和空间复杂度是平方级的,比较耗资源。
t-SNE几乎可用于所有高维数据集,广泛应用于图像处理,自然语言处理,基因组数据和语音处理。实例有:面部表情识别[2]、识别肿瘤亚群[3]、使用wordvec进行文本比较[4]等。
实现:R的Rtsne包;Python的sklearn包。
具体原理和实现代码请戳点击打开链接。
最后
以上就是天真白昼为你收集整理的降维算法--PCA 与 t-SNE的全部内容,希望文章能够帮你解决降维算法--PCA 与 t-SNE所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复