概述
利用NS3已有的Trace系统或者Log机制收集记录和统计数据,例如MAC层收发帧数目,网络层以上收发包数目的跟踪与统计,这里选取example/stats/wifi-example-sim.cc为例来很好说明问题:
这个仿真程序是一个简单的实验,包括两个节点,基于AdhocMAC信道模型,包含NS3仿真所需常见模型如节点/网络设备/协议栈和应用进程,这里的应用进程Sender 和Receiver,基于UDP的不可靠连接。
#include <ctime>
#include <sstream>
#include "ns3/core-module.h"
#include "ns3/network-module.h"
#include "ns3/mobility-module.h"
#include "ns3/wifi-module.h"
#include "ns3/internet-module.h"
#include "ns3/stats-module.h"
#include "wifi-example-apps.h"
using namespace ns3;
using namespace std;
NS_LOG_COMPONENT_DEFINE ("WiFiDistanceExperiment");
void TxCallback (Ptr<CounterCalculator<uint32_t> > datac,
std::string path, Ptr<const Packet> packet) {
NS_LOG_INFO ("Sent frame counted in " <<
datac->GetKey ());
datac->Update ();
// end TxCallback
}
//----------------------------------------------------------------------
//-- main
//----------------------------------------------
int main (int argc, char *argv[]) {
double distance = 50.0;
string format ("omnet");
string experiment ("wifi-distance-test");
string strategy ("wifi-default");
string input;
string runID;
{
stringstream sstr;
sstr << "run-" << time (NULL);
runID = sstr.str ();
}
// Set up command line parameters used to control the experiment.
CommandLine cmd;
cmd.AddValue ("distance", "Distance apart to place nodes (in meters).",
distance);
cmd.AddValue ("format", "Format to use for data output.",
format);
cmd.AddValue ("experiment", "Identifier for experiment.",
experiment);
cmd.AddValue ("strategy", "Identifier for strategy.",
strategy);
cmd.AddValue ("run", "Identifier for run.",
runID);
cmd.Parse (argc, argv);
if (format != "omnet" && format != "db") {
NS_LOG_ERROR ("Unknown output format '" << format << "'");
return -1;
}
#ifndef STATS_HAS_SQLITE3
if (format == "db") {
NS_LOG_ERROR ("sqlite support not compiled in.");
return -1;
}
#endif
{
stringstream sstr ("");
sstr << distance;
input = sstr.str ();
}
//------------------------------------------------------------
//-- Create nodes and network stacks
//--------------------------------------------
NS_LOG_INFO ("Creating nodes.");
NodeContainer nodes;
nodes.Create (2);
NS_LOG_INFO ("Installing WiFi and Internet stack.");
WifiHelper wifi;
WifiMacHelper wifiMac;
wifiMac.SetType ("ns3::AdhocWifiMac");
YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();
wifiPhy.SetChannel (wifiChannel.Create ());
NetDeviceContainer nodeDevices = wifi.Install (wifiPhy, wifiMac, nodes);
InternetStackHelper internet;
internet.Install (nodes);
Ipv4AddressHelper ipAddrs;
ipAddrs.SetBase ("192.168.0.0", "255.255.255.0");
ipAddrs.Assign (nodeDevices);
//------------------------------------------------------------
//-- Setup physical layout
//--------------------------------------------
NS_LOG_INFO ("Installing static mobility; distance " << distance << " .");
MobilityHelper mobility;
Ptr<ListPositionAllocator> positionAlloc =
CreateObject<ListPositionAllocator>();
positionAlloc->Add (Vector (0.0, 0.0, 0.0));
positionAlloc->Add (Vector (0.0, distance, 0.0));
mobility.SetPositionAllocator (positionAlloc);
mobility.Install (nodes);
//------------------------------------------------------------
//-- Create a custom traffic source and sink
//--------------------------------------------
NS_LOG_INFO ("Create traffic source & sink.");
Ptr<Node> appSource = NodeList::GetNode (0);
Ptr<Sender> sender = CreateObject<Sender>();
appSource->AddApplication (sender);
sender->SetStartTime (Seconds (1));
Ptr<Node> appSink = NodeList::GetNode (1);
Ptr<Receiver> receiver = CreateObject<Receiver>();
appSink->AddApplication (receiver);
receiver->SetStartTime (Seconds (0));
Config::Set ("/NodeList/*/ApplicationList/*/$Sender/Destination",
Ipv4AddressValue ("192.168.0.2"));
//------------------------------------------------------------
//-- Setup stats and data collection
//--------------------------------------------
// Create a DataCollector object to hold information about this run.
DataCollector data;
data.DescribeRun (experiment,//experiment 是对象
strategy,//strategy 是被检查的代码或者参数
input,//2个节点距离
runID);
// Add any information we wish to record about this run.
data.AddMetadata ("author", "tjkopena");
// Create a counter to track how many frames are generated.
Updates
// are triggered by the trace signal generated by the WiFi MAC model
// object.
Here we connect the counter to the signal via the simple
// TxCallback() glue function defined above.
Ptr<CounterCalculator<uint32_t> > totalTx =
CreateObject<CounterCalculator<uint32_t> >();
totalTx->SetKey ("wifi-tx-frames");
totalTx->SetContext ("node[0]");
Config::Connect ("/NodeList/0/DeviceList/*/$ns3::WifiNetDevice/Mac/MacTx",
MakeBoundCallback (&TxCallback, totalTx));
data.AddDataCalculator (totalTx);
// This is similar, but creates a counter to track how many frames
// are received.
Instead of our own glue function, this uses a
// method of an adapter class to connect a counter directly to the
// trace signal generated by the WiFi MAC.
Ptr<PacketCounterCalculator> totalRx =
CreateObject<PacketCounterCalculator>();
totalRx->SetKey ("wifi-rx-frames");
totalRx->SetContext ("node[1]");
Config::Connect ("/NodeList/1/DeviceList/*/$ns3::WifiNetDevice/Mac/MacRx",
MakeCallback (&PacketCounterCalculator::PacketUpdate,
totalRx));
data.AddDataCalculator (totalRx);
// This counter tracks how many packets---as opposed to frames---are
// generated.
This is connected directly to a trace signal provided
// by our Sender class.
Ptr<PacketCounterCalculator> appTx =
CreateObject<PacketCounterCalculator>();
appTx->SetKey ("sender-tx-packets");
appTx->SetContext ("node[0]");
Config::Connect ("/NodeList/0/ApplicationList/*/$Sender/Tx",
MakeCallback (&PacketCounterCalculator::PacketUpdate,
appTx));
data.AddDataCalculator (appTx);
// Here a counter for received packets is directly manipulated by
// one of the custom objects in our simulation, the Receiver
// Application.
The Receiver object is given a pointer to the
// counter and calls its Update() method whenever a packet arrives.
Ptr<CounterCalculator<> > appRx =
CreateObject<CounterCalculator<> >();
appRx->SetKey ("receiver-rx-packets");
appRx->SetContext ("node[1]");
receiver->SetCounter (appRx);
data.AddDataCalculator (appRx);
/**
* Just to show this is here...
Ptr<MinMaxAvgTotalCalculator<uint32_t> > test =
CreateObject<MinMaxAvgTotalCalculator<uint32_t> >();
test->SetKey("test-dc");
data.AddDataCalculator(test);
test->Update(4);
test->Update(8);
test->Update(24);
test->Update(12);
**/
// This DataCalculator connects directly to the transmit trace
// provided by our Sender Application.
It records some basic
// statistics about the sizes of the packets received (min, max,
// avg, total # bytes), although in this scenaro they're fixed.
Ptr<PacketSizeMinMaxAvgTotalCalculator> appTxPkts =
CreateObject<PacketSizeMinMaxAvgTotalCalculator>();
appTxPkts->SetKey ("tx-pkt-size");
appTxPkts->SetContext ("node[0]");
Config::Connect ("/NodeList/0/ApplicationList/*/$Sender/Tx",
MakeCallback
(&PacketSizeMinMaxAvgTotalCalculator::PacketUpdate,
appTxPkts));
data.AddDataCalculator (appTxPkts);
// Here we directly manipulate another DataCollector tracking min,
// max, total, and average propagation delays.
Check out the Sender
// and Receiver classes to see how packets are tagged with
// timestamps to do this.
Ptr<TimeMinMaxAvgTotalCalculator> delayStat =
CreateObject<TimeMinMaxAvgTotalCalculator>();
delayStat->SetKey ("delay");
delayStat->SetContext (".");
receiver->SetDelayTracker (delayStat);
data.AddDataCalculator (delayStat);
//------------------------------------------------------------
//-- Run the simulation
//--------------------------------------------
NS_LOG_INFO ("Run Simulation.");
Simulator::Run ();
//------------------------------------------------------------
//-- Generate statistics output.
//--------------------------------------------
// Pick an output writer based in the requested format.
Ptr<DataOutputInterface> output = 0;
if (format == "omnet") {
NS_LOG_INFO ("Creating omnet formatted data output.");
output = CreateObject<OmnetDataOutput>();
} else if (format == "db") {
#ifdef STATS_HAS_SQLITE3
NS_LOG_INFO ("Creating sqlite formatted data output.");
output = CreateObject<SqliteDataOutput>();
#endif
} else {
NS_LOG_ERROR ("Unknown output format " << format);
}
// Finally, have that writer interrogate the DataCollector and save
// the results.
if (output != 0)
output->Output (data);
// Free any memory here at the end of this example.
Simulator::Destroy ();
// end main
}
一 给定本次仿真参数distance,format,experiment,strategy,runID在初始化的同时也可以通过命令行改变,这些参数用于从多次实验中快速区分和组合数据。
二 创建节点和网络模型
三 安装协议栈,并分配IP
四 设置移动模型,这里为静止,并给定初始位置
五 安装应用,这里安装Sender / Receiver,自定义的见examples/stats/wifi-example-apps.h|cc
六 数据统计与收集,这是本文重点,下面具体分析。
这里创建DataCollector对象来存储运行信息,并通过Trace机制记录收发端帧和分组传输情况。
1 记录发端帧传输(基WIFI MAC对界)
通过CounterCalculator(src/stats/model/basic-data-calculators.h )类实现计数,利用Trace机制,当节点0上wifiNetDevice/Mac/MacTx变化(source),通过Config::Connect关联,定义的TxCallback作为sink函数调用,导致CounterCalculator::update调用即m_count++从而起到计数功能;
2 记录收端帧传输(基WIFI MAC对界)
类似情况1,虽然这里的sink函数是PacketConterCalculator::PacketUpdate(src/network/utils/packet-data-calculators.cc),但是该函数仍然是通过CounterCalculator::update实现计数,即利用Trace机制,当节点1上wifiNetDevice/Mac/MacRx变化(source),通过Config::Connect关联;
3 记录发端分组传输
也是通过PacketConterCalculator::PacketUpdate实现计数,利用Trace机制,当节点0上/Application/*/$Sender/Tx变化(source),通过通过Config::Connect关联,定义的PacketConterCalculator::PacketUpdate作为sink函数调用;
4 记录收端分组接收
由于收端应用Receiver没有定义traced source,故这里没有采用Trace机制,而是直接利用Receiver:;SetCounter直接操作,通过SetCounter显示类型转换,j将appRx赋值给Receiver内部计数器,从而实现计数
以上均是通过PacketConterCalculator(src/network/utils/packet-data-calculators.cc)或者CounterCalculator(src/stats/model/basic-data-calculators.h )实现传输单元的计数,下一个将通过引入PacketSizeMinMaxAvgTotalCalculator (src/network/utils/packet-data-calculators.h|cc)和MinMaxAvgTotalCalculator(src/stats/model/basic-data-calculators.h)实现单元内大小的记录。
5 记录发端分组大小
这里采用Trace机制,节点0上/Application/*/$Sender/Tx变化(source),通过通过Config::Connect关联,定义的PacketSizeMinMaxAvgTotalCalculator::PacketUpdate作为sink函数调用,从而MinMaxAvgTotalCalculator::Update实现大小的记录。
6 记录端到端产生分组时的延迟
类似情况4,不采用Trace机制,直接利用Receiver:;SetDelayTracker记录传世时延最值/平均值等
七 运行程序命令
八 统计结果输出
对于输出要么OMNet++(纯文本输出格式)要么SQLite(数据库格式输出),这取决于程序头部定义的参数format,并最终DataCollector对象进行存储。
九 控制脚本实现最后运行
通过 一个简单的控制脚本实现该仿真程序在不同距离下大量重复(作为输入)实验后运行画图。可参考example/stats/wifi-example-db.sh(以后自己写多个不同输入下重复仿真项目时可参考这个)。该运行脚本每次都是基于一个不同的距离作为输入,收集每次仿真结果到SQLite数据库,其中对于每个距离输入,进行5次重复实验以减小波动。全部仿真完成只需几十秒,在完成存储到数据库后,可通过SQLite命令行进行SQL查询。并调用 wifi-example.gnuplot画图
进入该目录
cd /NS3/ns-allinone-3.25/ns-3.25/examples/stats
./wifi-example-db.sh
产生data.db数据库,wifi-default.data和wifi-default.eps图
图是对应距离下的丢包率以表征WiFi模型性能。
最后
以上就是清脆乌龟为你收集整理的以wifi-example-sim.cc为例说明NS3统计数据模型的全部内容,希望文章能够帮你解决以wifi-example-sim.cc为例说明NS3统计数据模型所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复