我是靠谱客的博主 聪明大叔,最近开发中收集的这篇文章主要介绍opencv-图像人脸识别和视频人脸识别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

首先可以取opencv官方github下载识别模型xml文件:https://github.com/lonngxiang/opencv/tree/master/data/haarcascades

1,图像人脸识别

import cv2

filepath =r"C:UsersLavectorDesktop1111.jpg"
img = cv2.imread(filepath)  # 读取图片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # 转换灰色

# OpenCV人脸识别分类器
classifier = cv2.CascadeClassifier(
    r"C:UsersLavectorDesktopcv_modelopencvdatahaarcascadeshaarcascade_frontalface_default.xml"
)
color = (0, 255, 0)  # 定义绘制颜色
# 调用识别人脸
faceRects = classifier.detectMultiScale(
    gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32))
if len(faceRects):  # 大于0则检测到人脸
    for faceRect in faceRects:  # 单独框出每一张人脸
        x, y, w, h = faceRect
        # 框出人脸
        cv2.rectangle(img, (x, y), (x + h, y + w), color, 2)
        # 左眼
        cv2.circle(img, (x + w // 4, y + h // 4 + 30), min(w // 8, h // 8),
                   color)
        #右眼
        cv2.circle(img, (x + 3 * w // 4, y + h // 4 + 30), min(w // 8, h // 8),
                   color)
        #嘴巴
        cv2.rectangle(img, (x + 3 * w // 8, y + 3 * h // 4),
                      (x + 5 * w // 8, y + 7 * h // 8), color)

cv2.imshow("image", img)  # 显示图像
c = cv2.waitKey(10)

cv2.waitKey(0)
cv2.destroyAllWindows()

2,视频人脸识别

import cv2


# 图片识别方法封装
def discern(img):
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    cap = cv2.CascadeClassifier(
        r"C:UsersLavectorDesktopcv_modelopencvdatahaarcascadeshaarcascade_frontalface_default.xml"
    )
    faceRects = cap.detectMultiScale(
        gray, scaleFactor=1.2, minNeighbors=3, minSize=(50, 50))
    if len(faceRects):
        for faceRect in faceRects:
            x, y, w, h = faceRect
            cv2.rectangle(img, (x, y), (x + h, y + w), (0, 255, 0), 2)  # 框出人脸
    cv2.imshow("Image", img)


# 获取摄像头0表示第一个摄像头
cap = cv2.VideoCapture(0)
while (1):  # 逐帧显示
    ret, img = cap.read()
    # cv2.imshow("Image", img)
    discern(img)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
cap.release()  # 释放摄像头
cv2.destroyAllWindows()  # 释放窗口资源

face_recognition
https://github.com/ageitgey/face_recognition

import face_recognition
import cv2

# This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
#   1. Process each video frame at 1/4 resolution (though still display it at full resolution)
#   2. Only detect faces in every other frame of video.

# PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead.

# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)

# Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file(r"F.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]

# Load a second sample picture and learn how to recognize it.
# biden_image = face_recognition.load_image_file("biden.jpg")
# biden_face_encoding = face_recognition.face_encodings(biden_image)[0]

# Create arrays of known face encodings and their names
known_face_encodings = [
    obama_face_encoding,
    # biden_face_encoding
]
known_face_names = [
    "aa",
    # "Joe Biden"
]

# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:
    # Grab a single frame of video
    ret, frame = video_capture.read()

    # Resize frame of video to 1/4 size for faster face recognition processing
    small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

    # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
    rgb_small_frame = small_frame[:, :, ::-1]

    # Only process every other frame of video to save time
    if process_this_frame:
        # Find all the faces and face encodings in the current frame of video
        face_locations = face_recognition.face_locations(rgb_small_frame)
        face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

        face_names = []
        for face_encoding in face_encodings:
            # See if the face is a match for the known face(s)
            matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
            name = "Unknown"

            # If a match was found in known_face_encodings, just use the first one.
            if True in matches:
                first_match_index = matches.index(True)
                name = known_face_names[first_match_index]

            face_names.append(name)

    process_this_frame = not process_this_frame


    # Display the results
    for (top, right, bottom, left), name in zip(face_locations, face_names):
        # Scale back up face locations since the frame we detected in was scaled to 1/4 size
        top *= 4
        right *= 4
        bottom *= 4
        left *= 4

        # Draw a box around the face
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

        # Draw a label with a name below the face
        cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
        font = cv2.FONT_HERSHEY_DUPLEX
        cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

    # Display the resulting image
    cv2.imshow('Video', frame)

    # Hit 'q' on the keyboard to quit!
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()

最后

以上就是聪明大叔为你收集整理的opencv-图像人脸识别和视频人脸识别的全部内容,希望文章能够帮你解决opencv-图像人脸识别和视频人脸识别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(67)

评论列表共有 0 条评论

立即
投稿
返回
顶部