我是靠谱客的博主 淡然煎蛋,最近开发中收集的这篇文章主要介绍基于opencv实现人脸识别,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

人脸识别这个领域这两年非常火,公司有个产品也用到了相关技术,用于司机人脸打卡,虽然最终选用了face++的webAPI的方式实现,但这里还是讲一下在本地实现人脸识别系统的主要流程和相关代码。

为了建立我们的人脸识别系统,我们将首先进行人脸检测,利用深度学习从每个人脸中提取人脸嵌入,在嵌入上训练人脸识别模型,然后用OpenCV最终识别图像和视频流中的人脸。

你可以在相应的目录下添加你想要识别的图片进行训练,只要不破坏目录结构,你就会得到你想要的模型。

使用tree命令查看本实验的目录文件。

.
├── dataset
│   ├── hepburn
│   │   ├── 1.jpg
│   │   ├── 2.jpg
│   │   ├── 3.jpg
│   │   ├── 4.jpg
│   │   ├── 5.jpg
│   │   ├── 6.jpg
│   │   ├── 7.jpg
│   │   ├── 8.jpg
│   │   └── 9.jpg
│   ├── nini
│   │   ├── 11.jpg
│   │   ├── 12.jpg
│   │   ├── 1.jpg
│   │   ├── 2.jpg
│   │   ├── 3.jpg
│   │   ├── 4.jpg
│   │   ├── 5.jpg
│   │   ├── 6.jpg
│   │   └── 7.jpg
│   ├── unknown
│   │   ├── alan_grant.jpg
│   │   ├── claire_dearing.jpg
│   │   ├── ellie_sattler.jpg
│   │   ├── ian_malcolm.jpg
│   │   ├── john_hammond.jpg
│   │   ├── me1.jpg
│   │   ├── me2.jpg
│   │   ├── me3.jpg
│   │   ├── me4.jpg
│   │   ├── me5.jpg
│   │   └── own_grady.jpg
│   └── wife
│       ├── 11.jpg
│       ├── 12.jpg
│       ├── 13.jpg
│       ├── 14.jpg
│       ├── 15.jpg
│       ├── 1.jpg
│       ├── 2.jpg
│       ├── 3.jpg
│       ├── 4.jpg
│       ├── 5.jpg
│       ├── 6.jpg
│       └── 7.jpg
├── extract_embeddings.py
├── face_detection_model
│   ├── deploy.prototxt
│   └── res10_300x300_ssd_iter_140000.caffemodel
├── images
│   ├── hepburn1.jpg
│   ├── hepburn2.jpg
│   ├── hepburn3.jpg
│   ├── hepburn4.jpg
│   ├── nini.jpg
│   ├── wife2.jpg
│   └── wife.jpg
├── openface_nn4.small2.v1.t7
├── output
│   ├── embeddings.pickle
│   ├── le.pickle
│   └── recognizer.pickle
├── recognize.py
├── recognize_video.py
└── train_model.py

8 directories, 58 files

做一个人脸识别系统共分4步:

1、探测人脸

2、计算128维的人脸嵌入来量化一个人脸

3、基于人脸嵌入训练支持向量机(SVM)

4、在图像和视频流中识别人脸

流程如图所示:

 

注:要了解128维的人脸嵌入相关原理,请查看之前的博客。

接下来看代码:

提取人脸嵌入:

# USAGE
# python extract_embeddings.py --dataset dataset --embeddings output/embeddings.pickle 
#	--detector face_detection_model --embedding-model openface_nn4.small2.v1.t7

# import the necessary packages
from imutils import paths
import numpy as np
import argparse
import imutils
import pickle
import cv2
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--dataset", required=True,
	help="path to input directory of faces + images")
ap.add_argument("-e", "--embeddings", required=True,
	help="path to output serialized db of facial embeddings")
ap.add_argument("-d", "--detector", required=True,
	help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
	help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
	"res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images(args["dataset"]))

# initialize our lists of extracted facial embeddings and
# corresponding people names
knownEmbeddings = []
knownNames = []

# initialize the total number of faces processed
total = 0

# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
	# extract the person name from the image path
	print("[INFO] processing image {}/{}".format(i + 1,
		len(imagePaths)))
	name = imagePath.split(os.path.sep)[-2]

	# load the image, resize it to have a width of 600 pixels (while
	# maintaining the aspect ratio), and then grab the image
	# dimensions
	image = cv2.imread(imagePath)
	image = imutils.resize(image, width=600)
	(h, w) = image.shape[:2]

	# construct a blob from the image
	imageBlob = cv2.dnn.blobFromImage(
		cv2.resize(image, (300, 300)), 1.0, (300, 300),
		(104.0, 177.0, 123.0), swapRB=False, crop=False)

	# apply OpenCV's deep learning-based face detector to localize
	# faces in the input image
	detector.setInput(imageBlob)
	detections = detector.forward()

	# ensure at least one face was found
	if len(detections) > 0:
		# we're making the assumption that each image has only ONE
		# face, so find the bounding box with the largest probability
		i = np.argmax(detections[0, 0, :, 2])
		confidence = detections[0, 0, i, 2]

		# ensure that the detection with the largest probability also
		# means our minimum probability test (thus helping filter out
		# weak detections)
		if confidence > args["confidence"]:
			# compute the (x, y)-coordinates of the bounding box for
			# the face
			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX, startY, endX, endY) = box.astype("int")

			# extract the face ROI and grab the ROI dimensions
			face = image[startY:endY, startX:endX]
			(fH, fW) = face.shape[:2]

			# ensure the face width and height are sufficiently large
			if fW < 20 or fH < 20:
				continue

			# construct a blob for the face ROI, then pass the blob
			# through our face embedding model to obtain the 128-d
			# quantification of the face
			faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
				(96, 96), (0, 0, 0), swapRB=True, crop=False)
			embedder.setInput(faceBlob)
			vec = embedder.forward()

			# add the name of the person + corresponding face
			# embedding to their respective lists
			knownNames.append(name)
			knownEmbeddings.append(vec.flatten())
			total += 1

# dump the facial embeddings + names to disk
print("[INFO] serializing {} encodings...".format(total))
data = {"embeddings": knownEmbeddings, "names": knownNames}
f = open(args["embeddings"], "wb")
f.write(pickle.dumps(data))
f.close()

训练人脸识别模型:这里选用SVM实现

# USAGE
# python train_model.py --embeddings output/embeddings.pickle 
#	--recognizer output/recognizer.pickle --le output/le.pickle

# import the necessary packages
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
import argparse
import pickle

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--embeddings", required=True,
	help="path to serialized db of facial embeddings")
ap.add_argument("-r", "--recognizer", required=True,
	help="path to output model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
	help="path to output label encoder")
args = vars(ap.parse_args())

# load the face embeddings
print("[INFO] loading face embeddings...")
data = pickle.loads(open(args["embeddings"], "rb").read())

# encode the labels
print("[INFO] encoding labels...")
le = LabelEncoder()
labels = le.fit_transform(data["names"])

# train the model used to accept the 128-d embeddings of the face and
# then produce the actual face recognition
print("[INFO] training model...")
recognizer = SVC(C=1.0, kernel="linear", probability=True)
recognizer.fit(data["embeddings"], labels)

# write the actual face recognition model to disk
f = open(args["recognizer"], "wb")
f.write(pickle.dumps(recognizer))
f.close()

# write the label encoder to disk
f = open(args["le"], "wb")
f.write(pickle.dumps(le))
f.close()

识别人脸:

 

# USAGE
# python recognize.py --detector face_detection_model 
#	--embedding-model openface_nn4.small2.v1.t7 
#	--recognizer output/recognizer.pickle 
#	--le output/le.pickle --image images/adrian.jpg

# import the necessary packages
import numpy as np
import argparse
import imutils
import pickle
import cv2
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
	help="path to input image")
ap.add_argument("-d", "--detector", required=True,
	help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
	help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-r", "--recognizer", required=True,
	help="path to model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
	help="path to label encoder")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
	"res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

# load the image, resize it to have a width of 600 pixels (while
# maintaining the aspect ratio), and then grab the image dimensions
image = cv2.imread(args["image"])
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]

# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
	cv2.resize(image, (300, 300)), 1.0, (300, 300),
	(104.0, 177.0, 123.0), swapRB=False, crop=False)

# apply OpenCV's deep learning-based face detector to localize
# faces in the input image
detector.setInput(imageBlob)
detections = detector.forward()

# loop over the detections
for i in range(0, detections.shape[2]):
	# extract the confidence (i.e., probability) associated with the
	# prediction
	confidence = detections[0, 0, i, 2]

	# filter out weak detections
	if confidence > args["confidence"]:
		# compute the (x, y)-coordinates of the bounding box for the
		# face
		box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
		(startX, startY, endX, endY) = box.astype("int")

		# extract the face ROI
		face = image[startY:endY, startX:endX]
		(fH, fW) = face.shape[:2]

		# ensure the face width and height are sufficiently large
		if fW < 20 or fH < 20:
			continue

		# construct a blob for the face ROI, then pass the blob
		# through our face embedding model to obtain the 128-d
		# quantification of the face
		faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96),
			(0, 0, 0), swapRB=True, crop=False)
		embedder.setInput(faceBlob)
		vec = embedder.forward()

		# perform classification to recognize the face
		preds = recognizer.predict_proba(vec)[0]
		j = np.argmax(preds)
		proba = preds[j]
		name = le.classes_[j]

		# draw the bounding box of the face along with the associated
		# probability
		text = "{}: {:.2f}%".format(name, proba * 100)
		y = startY - 10 if startY - 10 > 10 else startY + 10
		cv2.rectangle(image, (startX, startY), (endX, endY),
			(0, 0, 255), 2)
		cv2.putText(image, text, (startX, y),
			cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

# show the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

上面这个代码是识别一张静态图片中的人脸,下面这个程序用于识别视频流中的人脸

# USAGE
# python recognize_video.py --detector face_detection_model 
#	--embedding-model openface_nn4.small2.v1.t7 
#	--recognizer output/recognizer.pickle 
#	--le output/le.pickle

# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import pickle
import time
import cv2
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--detector", required=True,
	help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
	help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-r", "--recognizer", required=True,
	help="path to model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
	help="path to label encoder")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
	help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
	"res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

# initialize the video stream, then allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=1).start()
time.sleep(2.0)

# start the FPS throughput estimator
fps = FPS().start()

# loop over frames from the video file stream
while True:
	# grab the frame from the threaded video stream
	frame = vs.read()

	# resize the frame to have a width of 600 pixels (while
	# maintaining the aspect ratio), and then grab the image
	# dimensions
	frame = imutils.resize(frame, width=600)
	(h, w) = frame.shape[:2]

	# construct a blob from the image
	imageBlob = cv2.dnn.blobFromImage(
		cv2.resize(frame, (300, 300)), 1.0, (300, 300),
		(104.0, 177.0, 123.0), swapRB=False, crop=False)

	# apply OpenCV's deep learning-based face detector to localize
	# faces in the input image
	detector.setInput(imageBlob)
	detections = detector.forward()

	# loop over the detections
	for i in range(0, detections.shape[2]):
		# extract the confidence (i.e., probability) associated with
		# the prediction
		confidence = detections[0, 0, i, 2]

		# filter out weak detections
		if confidence > args["confidence"]:
			# compute the (x, y)-coordinates of the bounding box for
			# the face
			box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
			(startX, startY, endX, endY) = box.astype("int")

			# extract the face ROI
			face = frame[startY:endY, startX:endX]
			(fH, fW) = face.shape[:2]

			# ensure the face width and height are sufficiently large
			if fW < 20 or fH < 20:
				continue

			# construct a blob for the face ROI, then pass the blob
			# through our face embedding model to obtain the 128-d
			# quantification of the face
			faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
				(96, 96), (0, 0, 0), swapRB=True, crop=False)
			embedder.setInput(faceBlob)
			vec = embedder.forward()

			# perform classification to recognize the face
			preds = recognizer.predict_proba(vec)[0]
			j = np.argmax(preds)
			proba = preds[j]
			name = le.classes_[j]

			# draw the bounding box of the face along with the
			# associated probability
			text = "{}: {:.2f}%".format(name, proba * 100)
			y = startY - 10 if startY - 10 > 10 else startY + 10
			cv2.rectangle(frame, (startX, startY), (endX, endY),
				(0, 0, 255), 2)
			cv2.putText(frame, text, (startX, y),
				cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

	# update the FPS counter
	fps.update()

	# show the output frame
	cv2.imshow("Frame", frame)
	key = cv2.waitKey(1) & 0xFF

	# if the `q` key was pressed, break from the loop
	if key == ord("q"):
		break

# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

看下效果:

 

 

 

想详细了解这个实验的朋友请参考:https://www.pyimagesearch.com/2018/09/24/opencv-face-recognition/

最后

以上就是淡然煎蛋为你收集整理的基于opencv实现人脸识别的全部内容,希望文章能够帮你解决基于opencv实现人脸识别所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(74)

评论列表共有 0 条评论

立即
投稿
返回
顶部