概述
工程中,经常要产生测试数据,比如特定包含噪声的曲线。以下是Matlab实现的通过鼠标拾取坐标点,然后生成包含直线和圆弧的x,y坐标的代码。
操作方式:鼠标拾取一个起点,弹出选择菜单,选择直线或者圆弧,选择直线后,鼠标拾取第二个点;选择圆弧之后,鼠标拾取另外两个点,通过三个点拟合圆弧并生成圆弧数据。
主文件:
clc,clear,close all%
figure
axis([0 1000 0 1000])%坐标轴大小
axis square
x_out=[];y_out=[];%保存所有生成的数据
xy0=ginput(1);%起点
temp_xy=xy0;%上一次拾取的点
plot(xy0(1),xy0(2),'*')
axis([0 1000 0 1000]),hold on
axis square
n=4;%曲线的段数
for i=1:n
res=menu('选择','直线','圆弧');
if(res==1)
%disp(['选择的是直线'])
xy1=ginput(1);
[x,y]=drawLine(temp_xy,xy1);
x_out=[x_out x];y_out=[y_out y];
temp_xy=xy1(end,:);
plot(x,y);
else
%disp(['选择的是圆弧'])
%注意圆弧y坐标唯一,即扇形角度不能超过180度
xy1=ginput(2);
[x,y]=getArc(temp_xy,xy1(1,:),xy1(2,:));
x_out=[x_out x];y_out=[y_out y];
temp_xy=xy1(end,:);
end
end
%加噪声
noise=2;%设定噪声幅度
for i=1:length(x_out)
y_out(i)=y_out(i)+random('Normal',-1*noise,noise);
end
xy_file=[x_out' y_out'];%转置为两列
xy_file=sortrows(xy_file,1);%按x坐标(第一列)重排序,放置圆弧产生的顺序颠倒
xy_file=[xy_file(:,1)';xy_file(:,2)']%转置回两行坐标形式
figure
plot(xy_file(1,:),xy_file(2,:))
%写入txt文件,文件名自动递增
count=1;
fileName=['D:data' num2str(count) '.txt'];
if(exist(fileName,'file'))
count=count+1;
fileName=['D:data' num2str(count) '.txt'];
end
fid=fopen(fileName,'wt');
fprintf(fid,'%f,%fn',xy_file);
fclose(fid);
两点生成直线文件:
%两点产生直线数据
function [x,y]=drawLine(A,B)
x=A(1):0.1:B(1);
y=(B(2)-A(2))/(B(1)-A(1))*(x-A(1))+A(2);
end
三点生成圆弧数据文件:
%三点计算圆弧(画图)
%数据A=[1 2];
%B=[5 6];
%C=[3 5];
function [x,y]=getArc(A,B,C)
[c,r]=calcCircle(A,B,C);
a=c(1);
b=c(2);
th=[A;B;C];
th2=[th(:,1)-a th(:,2)-b];
theta=atan2(th2(:,2),th2(:,1));
[theta_max,num_max]=max(theta);
[theta_min,num_min]=min(theta);
t=linspace(theta_min,theta_max,1000);
%t=0:0.1:2*pi;
a=c(1);
b=c(2);
x=r*cos(t)+a;
y=r*sin(t)+b;
plot(x,y,'r-',th(:,1),th(:,2),'o')
%axis equal
end
圆弧拟合文件(注:该文件来源于网络):
function [centre radius] = calcCircle(pt1, pt2, pt3)
% calcCircle: Fit a circle to a set of 3 points
%
% Inputs:
% pt1, pt2 and pt3 are vectors with 2 elements representing a point
% in 2D Cartesian coordinates.
%
% Returns:
% The centre coordinate (2 elements) and radius of the circle.
% A centre value of [0,0] and radius of -1 if the points are collinear.
%
% Example:
%
% p1 = rand(1,2);
% p2 = rand(1,2);
% p3 = rand(1,2);
%
% [c r] = calcCircle(p1, p2, p3);
%
% figure(1)
% cla
% axis equal
% hold on
% if r ~= -1
% rectangle('Position',[c(1)-r,c(2)-r,2*r,2*r],'Curvature',[1,1],'EdgeColor','g')
% end
% plot(p1(1), p1(2), '*')
% plot(p2(1), p2(2), '*')
% plot(p3(1), p3(2), '*')
%
% for Matlab R13 and up
% version 1.2 (mar 2008)
% Author: Peter Bone (email: peterbone@hotmail.com)
%
% History
% Created: 6th March 2008, version 1.1
% Revisions
% 7th March 2008: Version 1.2 for improved help and usability
% argument checking
if nargin < 3
error('Three input points are required.');
elseif ~isequal(numel(pt1),numel(pt2),numel(pt3),2)
error('The three input points should all have two elements.')
end
pt1 = double(pt1);
pt2 = double(pt2);
pt3 = double(pt3);
epsilon = 0.000000001;
delta_a = pt2 - pt1;
delta_b = pt3 - pt2;
ax_is_0 = abs(delta_a(1)) <= epsilon;
bx_is_0 = abs(delta_b(1)) <= epsilon;
% check whether both lines are vertical - collinear
if ax_is_0 && bx_is_0
centre = [0 0];
radius = -1;
warning([mfilename ':CollinearPoints'],'Points are on a straight line (collinear).');
return
end
% make sure delta gradients are not vertical
% swap points to change deltas
if ax_is_0
tmp = pt2;
pt2 = pt3;
pt3 = tmp;
delta_a = pt2 - pt1;
end
if bx_is_0
tmp = pt1;
pt1 = pt2;
pt2 = tmp;
delta_b = pt3 - pt2;
end
grad_a = delta_a(2) / delta_a(1);
grad_b = delta_b(2) / delta_b(1);
% check whether the given points are collinear
if abs(grad_a-grad_b) <= epsilon
centre = [0 0];
radius = -1;
warning([mfilename ':CollinearPoints'],'Points are on a straight line (collinear).');
return
end
% swap grads and points if grad_a is 0
if abs(grad_a) <= epsilon
tmp = grad_a;
grad_a = grad_b;
grad_b = tmp;
tmp = pt1;
pt1 = pt3;
pt3 = tmp;
end
% calculate centre - where the lines perpendicular to the centre of
% segments a and b intersect.
centre(1) = ( grad_a*grad_b*(pt1(2)-pt3(2)) + grad_b*(pt1(1)+pt2(1)) - grad_a*(pt2(1)+pt3(1)) ) / (2*(grad_b-grad_a));
centre(2) = ((pt1(1)+pt2(1))/2 - centre(1)) / grad_a + (pt1(2)+pt2(2))/2;
% calculate radius
radius = norm(centre - pt1);
部分截图:
最后
以上就是寒冷黑猫为你收集整理的matlab calccircle,Matlab交互式生成特定曲线的全部内容,希望文章能够帮你解决matlab calccircle,Matlab交互式生成特定曲线所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复