概述
一 什么是音频的采样率和采样大小
自然界中的声音非常复杂,波形极其复杂,通常我们采用的是脉冲代码调制编码。即PCM编码。PCM通过抽样、量化、编码三个步骤将连续变化的模拟信号转换为数字编码。
抽样:在音频采集中叫做采样率。 由于声音其实是一种能量波,因此也有频率和振幅的特征,频率对应于时间轴线,振幅对应于电平轴线。波是无限光滑的,弦线可以看成由无数点组成,由于存储空间是相对有限的,数字编码过程中,必须对弦线的点进行采样。采样的过程就是抽取某点的频率值,很显然,在一秒中内抽取的点越多,获取得频率信息更丰富,为了复原波形,一次振动中,必须有2个点的采样,人耳能够感觉到的最高频率为20kHz,因此要满足人耳的听觉要求,则需要至少每秒进行40k次采样,用40kHz表达,这个40kHz就是采样率。我们常见的CD,采样率为44.1kHz。 量化:我们这里的采样大小就是量化的过程, 将该频率的能量值并量化,用于表示信号强度。量化电平数为 2的整数次幂,我们常见的CD位16bit的采样大小,即2的16次方。 编码: 根据采样率和采样大小可以得知,相对自然界的信号,音频编码最多只能做到无限接近,至少目前的技术只能这样了,相对自然界的信号,任何数字音频编码方案都是有损的,因为无法完全还原。在计算机应用中,能够达到最高保真水平的就是PCM编码,被广泛用于素材保存及音乐欣赏,CD、DVD以及我们常见的WAV文件中均有应用。因此,PCM约定俗成了无损编码,因为PCM代表了数字音频中最佳的保真水准,并不意味着PCM就能够确保信号绝对保真,PCM也只能做到最大程度的无限接近。我们而习惯性的把MP3列入有损音频编码范畴,是相对PCM编码的。强调编码的相对性的有损和无损,是为了告诉大家,要做到真正的无损是困难的,就像用数字去表达圆周率,不管精度多高,也只是无限接近,而不是真正等于圆周率的值 为什么要使用音频压缩技术 要算一个PCM音频流的码率是一件很轻松的事情,采样率值×采样大小值×声道数bps。一个采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的WAV文件,它的数据速率则为 44.1K×16×2 =1411.2 Kbps。我们常说128K的MP3,对应的WAV的参数,就是这个1411.2 Kbps,这个参数也被称为数据带宽,它和ADSL中的带宽是一个概念。将码率除以8,就可以得到这个WAV的数据速率,即176.4KB/s。这表示存储一秒钟采样率为44.1KHz,采样大小为16bit,双声道的PCM编码的音频信号,需要176.4KB的空间,1分钟则约为10.34M,这对大部分用户是不可接受的,尤其是喜欢在电脑上听音乐的朋友,要降低磁盘占用,只有2种方法,降低采样指标或者压缩。降低指标是不可取的,因此专家们研发了各种压缩方案。由于用途和针对的目标市场不一样,各种音频压缩编码所达到的音质和压缩比都不一样,在后面的文章中我们都会一一提到。有一点是可以肯定的,他们都压缩过。 频率与采样率的关系 采样率表示了每秒对原始信号采样的次数,我们常见到的音频文件采样率多为44.1KHz,这意味着什么呢?假设我们有2段正弦波信号,分别为20Hz和20KHz,长度均为一秒钟,以对应我们能听到的最低频和最高频,分别对这两段信号进行 40KHz的采样,我们可以得到一个什么样的结果呢?结果是:20Hz的信号每次振动被采样了40K/20=2000次,而20K的信号每次振动只有2次采样。显然,在相同的采样率下,记录低频的信息远比高频的详细。这也是为什么有些音响发烧友指责CD有数码声不够真实的原因,CD的44.1KHz采样也无法保证高频信号被较好记录。要较好的记录高频信号,看来需要更高的采样率,于是有些朋友在捕捉CD音轨的时候使用48KHz的采样率,这是不可取的!这其实对音质没有任何好处,对抓轨软件来说,保持和CD提供的44.1KHz一样的采样率才是最佳音质的保证之一,而不是去提高它。较高的采样率只有相对模拟信号的时候才有用,如果被采样的信号是数字的,请不要去尝试提高采样率。 流特征 随着网络的发展,人们对在线收听音乐提出了要求,因此也要求音频文件能够一边读一边播放,而不需要把这个文件全部读出后然后回放,这样就可以做到不用下载就可以实现收听了。也可以做到一边编码一边播放,正是这种特征,可以实现在线的直播,架设自己的数字广播电台成为了现实。 二 android中AudioRecord采集音频的参数说明在android中采集音频的api是android.media.AudioRecord类其中构造器的几个参数就是标准的声音采集参数 以下是参数的含义解释 public AudioRecord (int audioSource, int sampleRateInHz, int channelConfig, int audioFormat, int bufferSizeInBytes)Since: API Level 3 Class constructor. Parameters
|
// 音频获取源
private
int
audioSource = MediaRecorder.AudioSource.MIC;
// 设置音频采样率,44100是目前的标准,但是某些设备仍然支持22050,16000,11025
private
static
int
sampleRateInHz =
44100
;
// 设置音频的录制的声道CHANNEL_IN_STEREO为双声道,CHANNEL_CONFIGURATION_MONO为单声道
private
static
int
channelConfig = AudioFormat.CHANNEL_CONFIGURATION_MONO;
// 音频数据格式:PCM 16位每个样本。保证设备支持。PCM 8位每个样本。不一定能得到设备支持。
private
static
int
audioFormat = AudioFormat.ENCODING_PCM_16BIT;
|
File file = new File(Environment.getExternalStorageDirectory() .getAbsolutePath() + "/test.pcm"); // 删除录音文件 if (file.exists()) file.delete(); // 创建录音文件 try { file.createNewFile(); } catch (IOException e) { throw new IllegalStateException("Failed to create " + file.toString()); } try { // Create a DataOuputStream to write the audio data into the // saved file. FileOutputStream fos = new FileOutputStream(file);// 建立一个可存取字节的文件 // Create a new AudioRecord object to record the audio. // 获得满足条件的最小缓冲区大小 bufferSizeInBytes = AudioRecord.getMinBufferSize( sampleRateInHz, channelConfig, audioFormat); // 创建AudioRecord对象 audioRecord = new AudioRecord(audioSource, sampleRateInHz, channelConfig, audioFormat, bufferSizeInBytes); byte[] buffer = new byte[bufferSizeInBytes]; audioRecord.startRecording(); isRecording = true; while (isRecording) { audioRecord.read(buffer, 0, bufferSizeInBytes); fos.write(buffer); } audioRecord.stop(); audioRecord.stop(); audioRecord.release();// 释放资源 audioRecord = null; fos.close(); } catch (Throwable t) { Log.e("AudioRecord", "Recording Failed"); }
// 放音的文件 File file = new File(Environment.getExternalStorageDirectory() .getAbsolutePath() + "/test.pcm"); FileInputStream in = null; try { in = new FileInputStream(file); } catch (FileNotFoundException e) { // TODO Auto-generated catch block e.printStackTrace(); } // 获得满足条件的最小缓冲区大小 bufferSizeInBytes = AudioRecord.getMinBufferSize( sampleRateInHz, channelConfig, audioFormat); byte[] buffer = new byte[bufferSizeInBytes]; int byteread=0; AudioTrack audioTrack = new AudioTrack(AudioManager.STREAM_MUSIC, sampleRateInHz, channelConfig, audioFormat, bufferSizeInBytes, AudioTrack.MODE_STREAM); // 放音 audioTrack.play(); try { while ((byteread = in.read(buffer)) != -1) { System.out.write(buffer, 0, byteread); System.out.flush(); audioTrack.write(buffer, 0, bufferSizeInBytes); } } catch (Exception e) { Log.e("AudioTrack", "Playback Failed"); }
最后
以上就是俊秀眼神为你收集整理的android pcm编解码的全部内容,希望文章能够帮你解决android pcm编解码所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复