我是靠谱客的博主 壮观白羊,最近开发中收集的这篇文章主要介绍phd文献阅读日志,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

为了记住并提醒自己阅读文献,进行了记录(这些论文都是我看过理解的),论文一直在更新中。
1.week 6,2017.10.16
2014-Automatic Semantic Modeling of Indoor Scenes from Low-quality RGB-D Data using Contextual
期刊来源:ACM Transaction on Graphic
2.week 7,2017.10.9
2014-Annotating RGBD images of indoor scene
期刊来源:SIGGRAPH Asia 2014 Indoor Scene Understanding Where Graphics Meets Vision. ACM
3.week 8,2017.10.23
2016-Discovering overlooked objects: Context-based boosting of object detection in indoor scene
期刊来源:Pattern recognition letter
4.week 9,2017.10.30
2016-FuseNet Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture
期刊来源:Asian Conference on Computer Vision , 2016 :213-228
5.week10, 2017.11.8
2015-3D ShapeNets A Deep Representation for Volumetric Shape Modeling
期刊来源:Wu Z, Song S, Khosla A, et al. 3d shapenets: A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015: 1912-1920.
6.week 12, 2017.11.20
2016-A Point Set Generation Network for 3D Object Reconstruction from a Single Image
期刊来源:Fan H, Su H, Guibas L. A point set generation network for 3d object reconstruction from a single image[J]. arXiv preprint arXiv:1612.00603, 2016.
7.week 13,16, 2017.11.27,2017.12.18
2016-Unsupervised 3D Local Feature Learning by Circle Convolutional Restricted Boltzmann Machine
期刊来源:Han Z, Liu Z, Han J, et al. Unsupervised 3d local feature learning by circle convolutional restricted boltzmann machine[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5331-5344.
8.week 17, 2017.12.25
2017-Perspective Transformer Nets_ Learning Single-View 3D Object Reconstruction without 3D Supervise
期刊来源:Yan X, Yang J, Yumer E, et al. Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision[C]//Advances in Neural Information Processing Systems. 2016: 1696-1704.
9.week18,2018.1.3
2016-Spatial Transformer Network
期刊来源:Jaderberg M, Simonyan K, Zisserman A. Spatial transformer networks[C]//Advances in Neural Information Processing Systems. 2015: 2017-2025.

文章理解:http://download.csdn.net/my

10.week19,2018.1.8

2017-Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image

期刊来源:Kong C, Lin C H, Lucey S. Using Locally Corresponding CAD Models for Dense 3D Reconstructions from a Single Image[C]// IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2017:5603-5611.

2017-submit-Compact Model Representation for 3D Reconstruction

期刊来源:Pontes J K, Kong C, Eriksson A, et al. Compact Model Representation for 3D Reconstruction[J]. 2017.

11.week20,2018.1.15

2017-Image2Mesh A Learning Framework for Single Image 3D Reconstruction

期刊来源:Pontes J K, Kong C, Sridharan S, et al. Image2Mesh: A Learning Framework for Single Image 3D Reconstruction[J]. 2017.

最后

以上就是壮观白羊为你收集整理的phd文献阅读日志的全部内容,希望文章能够帮你解决phd文献阅读日志所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部