我是靠谱客的博主 欢喜小蝴蝶,最近开发中收集的这篇文章主要介绍理论力学-ch1矢量运算,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

文章目录

    • ch1 矢量运算
      • 基本概念
      • 矢量列阵
        • 矢量阵的运算
      • 矢量的代数描述(重点)
        • 坐标阵
        • 坐标方阵
        • 矢量运算和坐标阵的运算(*)
      • 平面矢量
        • 法矢量与平面矢量的叉积

ch1 矢量运算

基本概念

两重叉积 a ⃗ × ( b ⃗ × c ⃗ ) = b ⃗ ( a ⃗ ⋅ c ⃗ ) − ( b ⃗ ⋅ a ⃗ ) c ⃗ quad vec{a} times(vec{b} times vec{c})=vec{b}(vec{a} cdot vec{c})-(vec{b} cdot vec{a}) vec{c} a ×(b ×c )=b (a c )(b a )c
混合积 a ⃗ ⋅ ( b ⃗ × c ⃗ ) = c ⃗ ⋅ ( a ⃗ × b ⃗ ) = b ⃗ ⋅ ( c ⃗ × a ⃗ ) quad vec{a} cdot(vec{b} times vec{c})=vec{c} cdot(vec{a} times vec{b})=vec{b} cdot(vec{c} times vec{a}) a (b ×c )=c (a ×b )=b (c ×a )

矢量基: 三个相互正交的矢量构成的三维空间
基点:原点O
基矢量:构成矢量基的三个单位矢量 e ⃗ 1 , e ⃗ 2 , e ⃗ 3 quad vec{e}_{1}, quad vec{e}_{2}, quad vec{e}_{3} e 1,e 2,e 3

单位矢量 e ⃗ α ⋅ e ⃗ β = δ α β α , β = 1 , 2 , 3 quad vec{e}_{alpha} cdot vec{e}_{beta}=delta_{alpha beta} quad alpha, beta=1,2,3 e αe β=δαβα,β=1,2,3

δ α β = { 1  当  α = β 0  当  α ≠ β e ⃗ 1 ⋅ e ⃗ 1 = δ 11 = 1 e ⃗ 2 ⋅ e ⃗ 1 = δ 21 = 0 begin{array}{c} delta_{alpha beta}=left{begin{array}{ll} 1 & text { 当 } alpha=beta \ 0 & text { 当 } alpha neq beta end{array}right. \ vec{e}_{1} cdot vec{e}_{1}=delta_{11}=1 & vec{e}_{2} cdot vec{e}_{1}=delta_{21}=0 end{array} δαβ={10  α=β  α=βe 1e 1=δ11=1e 2e 1=δ21=0

矢量列阵

定义
e ⃗ = ( e ⃗ 1 e ⃗ 2 e ⃗ 2 ) = ( e ⃗ 1 e ⃗ 2 e ⃗ 3 ) T vec{e}=left(begin{array}{l} vec{e}_{1} \ vec{e}_{2} \ vec{e}_{2} end{array}right)=left(begin{array}{lll} vec{e}_{1} & vec{e}_{2} & vec{e}_{3} end{array}right)^{mathrm{T}} e =e 1e 2e 2=(e 1e 2e 3)T
右旋正交
e ⃗ α × e ⃗ β = ε α β γ e ⃗ γ α , β , γ = 1 , 2 , 3 ε α β γ = { + 1  当  α , β ,  依次循环  − 1  其余  vec{e}_{alpha} times vec{e}_{beta}=varepsilon_{alpha beta gamma} vec{e}_{gamma} \ alpha, beta, gamma = 1,2,3 \ varepsilon_{alpha beta gamma}=left{begin{array}{ll} +1 & text { 当 } alpha, beta, text { 依次循环 } \ -1 & text { 其余 } end{array}right. e α×e β=εαβγe γα,β,γ=1,2,3εαβγ={+11  α,β, 依次循环  其余 

矢量阵的运算

在这里插入图片描述

矢量的代数描述(重点)

坐标阵

a = ( a 1 a 2 a 3 ) T boldsymbol{a}=left(begin{array}{lll} a_{1} & a_{2} & a_{3} end{array}right)^{mathrm{T}} a=(a1a2a3)T

在给定的矢量基下,矢量与 其的坐标阵一一对应

坐标阵又称“代数矢量”

坐标阵和矢量的相互表示
a = ( a 1 a 2 a 3 ) = ( a ⃗ ⋅ e ⃗ 1 a ⃗ ⋅ e ⃗ 2 a ⃗ ⋅ e ⃗ 3 ) = a ⃗ ⋅ ( e ⃗ 1 e ⃗ 2 e ⃗ 3 ) begin{array}{r} boldsymbol{a}=left(begin{array}{l} a_{1} \ a_{2} \ a_{3} end{array}right)=left(begin{array}{l} vec{a} cdot vec{e}_{1} \ vec{a} cdot vec{e}_{2} \ vec{a} cdot vec{e}_{3} end{array}right)=vec{a} cdotleft(begin{array}{l} vec{e}_{1} \ vec{e}_{2} \ vec{e}_{3} end{array}right) end{array} a=a1a2a3=a e 1a e 2a e 3=a e 1e 2e 3

a = a ⃗ ⋅ e ⃗ = e ⃗ ⋅ a ⃗ a ⃗ = e ⃗ T a a ⃗ = a T e ⃗ boldsymbol{a}=vec{a} cdot vec{e}=vec{e} cdot vec{a} \ vec{boldsymbol{a}}=vec{boldsymbol{e}}^{mathrm{T}} boldsymbol{a} \ vec{boldsymbol{a}}={boldsymbol{a}}^{mathrm{T}} vec{boldsymbol{e}} a=a e =e a a =e Taa =aTe

坐标方阵

反对称阵
a ~ = ( 0 − a 3 a 2 a 3 0 − a 1 − a 2 a 1 0 ) tilde{boldsymbol{a}}=left(begin{array}{ccc} 0 & -a_{3} & a_{2} \ a_{3} & 0 & -a_{1} \ -a_{2} & a_{1} & 0 end{array}right) a~=0a3a2a30a1a2a10

矢量运算和坐标阵的运算(*)

矢量式
a ⃗ = b ⃗ c ⃗ = a ⃗ + b ⃗ c ⃗ = α a ⃗ α = a ⃗ ⋅ b ⃗ = b ⃗ ⋅ a ⃗ c ⃗ = a ⃗ × b ⃗ = − b ⃗ × a ⃗ begin{array}{c} vec{a}=vec{b} \ vec{c}=vec{a}+vec{b} \ vec{c}=alpha vec{a} \ alpha=vec{a} cdot vec{b}=vec{b} cdot vec{a} \ vec{c}=vec{a} times vec{b}=-vec{b} times vec{a} end{array} a =b c =a +b c =αa α=a b =b a c =a ×b =b ×a
坐标阵运算式
a = b c = a + b c = α a α = a T b = b T a c = a ~ b = − b ~ a begin{array}{c} a=b \ c=a+b \ c=alpha a \ alpha=a^{mathrm{T}} b=b^{mathrm{T}} a \ c=tilde{a} b=-tilde{b} a end{array} a=bc=a+bc=αaα=aTb=bTac=a~b=b~a

平面矢量

定义

  • 当所有的矢量的变化与运算均发生在同一平面内

  • 这些矢量仅可能与 垂直 于该平面的矢量发生运算

  • 这些矢量的代数描述可在一个二维空间中进行

平面矢量基
基矢量 x ⃗ vec{x} x y ⃗ vec{y} y 构成一平面矢量基 e → overrightarrow{boldsymbol{e}} e
e → = ( x ⃗ , y ⃗ ) T overrightarrow{boldsymbol{e}}=(vec{x}, vec{y})^{mathrm{T}} e =(x ,y )T
垂直于该平面的单位矢量记为 改 且
z ⃗ = x ⃗ × y ⃗ vec{z}=vec{x} times vec{y} z =x ×y
单位矢量 Z ⃗ vec{Z} Z 称法矢量

c = a ~ b = ( 0 0 a y 0 0 − a x − a y a x 0 ) ( b x b y 0 ) = ( 0 0 a x b y − a y b x )  矢量  c ⃗ = a ⃗ × b ⃗  的模  c = a x b y − a y b x begin{aligned} &boldsymbol{c}=tilde{boldsymbol{a}} boldsymbol{b}=left(begin{array}{ccc} 0 & 0 & a_{y} \ 0 & 0 & -a_{x} \ -a_{y} & a_{x} & 0 end{array}right)left(begin{array}{c} b_{x} \ b_{y} \ 0 end{array}right)=left(begin{array}{c} 0 \ 0 \ a_{x} b_{y}-a_{y} b_{x} end{array}right)\ &text { 矢量 } vec{c}=vec{a} times vec{b} text { 的模 } quad c=a_{x} b_{y}-a_{y} b_{x} end{aligned} c=a~b=00ay00axayax0bxby0=00axbyaybx 矢量 c =a ×b  的模 c=axbyaybx

c ⃗ = ( a x b y − a v b x ) z ⃗ vec{c}=left(a_{x} b_{y}-a_{v} b_{x}right) vec{z} c =(axbyavbx)z

引 入 反 对 称 阵 I ~ =  def  ( 0 − 1 1 0 ) c = ( I ~ a ) T b = [ ( 0 − 1 1 0 ) ( a x a y ) ] T ( b x b y ) = a x b y − a y b x 引入反对称阵quad tilde{I} stackrel{text { def }}{=}left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right) \ c=(tilde{I} a)^{mathrm{T}} b=left[left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right)left(begin{array}{l} a_{x} \ a_{y} end{array}right)right]^{mathrm{T}}left(begin{array}{l} b_{x} \ b_{y} end{array}right)=a_{x} b_{y}-a_{y} b_ {x} I~= def (0110)c=(I~a)Tb=[(0110)(axay)]T(bxby)=axbyaybx

c ⃗ = a ⃗ × b ⃗ = ( I ‾ ~ a ‾ ) T b ‾ z ⃗ vec{c}=vec{a} times vec{b}=(tilde{underline{I}}underline{a})^{mathrm{T}} underline{b} vec{z} c =a ×b =(I~a)Tbz

法矢量与平面矢量的叉积

矢量 a ⃗ ^ hat{vec{a}} a ^ 为矢量 a ⃗ vec{a} a 绕法矢量逆时针旋转90度
a ⃗ ^ = z ⃗ × a ⃗ = − a y x ⃗ + a x y ⃗ hat{vec{a}}=vec{z} times vec{a}=-a_{y} vec{x}+a_{x} vec{y} a ^=z ×a =ayx +axy

a ^ = ( 0 − 1 1 0 ) ( a x a y ) = ( − a y a x ) hat{boldsymbol{a}}=left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right)left(begin{array}{l} a_{x} \ a_{y} end{array}right)=left(begin{array}{c} -a_{y} \ a_{x} end{array}right) a^=(0110)(axay)=(ayax)

反对称阵 I ~ tilde{boldsymbol{I}} I~的性质
I ~ T = − I ~ I ~ = − I I ~ T I ~ = I ~ I ~ T = I begin{array}{l} tilde{boldsymbol{I}}^{mathrm{T}}=-tilde{boldsymbol{I}} \ widetilde{boldsymbol{I}}=-boldsymbol{I} \ tilde{boldsymbol{I}}^{mathrm{T}} tilde{boldsymbol{I}}=tilde{boldsymbol{I}} tilde{boldsymbol{I}}^{mathrm{T}}=boldsymbol{I} end{array} I~T=I~I =II~TI~=I~I~T=I

I ~ = ( 0 − 1 1 0 ) ( 0 − 1 1 0 ) ( 0 − 1 1 0 ) = ( − 1 0 0 − 1 ) ( 0 1 − 1 0 ) ( 0 − 1 1 0 ) = ( 1 0 0 1 ) begin{array}{r} tilde{I}=left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right) \ left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right)left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right)=left(begin{array}{cc} -1 & 0 \ 0 & -1 end{array}right) \ left(begin{array}{cc} 0 & 1 \ -1 & 0 end{array}right)left(begin{array}{cc} 0 & -1 \ 1 & 0 end{array}right)=left(begin{array}{cc} 1 & 0 \ 0 & 1 end{array}right) end{array} I~=(0110)(0110)(0110)=(1001)(0110)(0110)=(1001)

最后

以上就是欢喜小蝴蝶为你收集整理的理论力学-ch1矢量运算的全部内容,希望文章能够帮你解决理论力学-ch1矢量运算所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(43)

评论列表共有 0 条评论

立即
投稿
返回
顶部