我是靠谱客的博主 坚定可乐,最近开发中收集的这篇文章主要介绍torch、torch_sparse、dgl三者spmm显存占用对比,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

简单比较一下torch原生,torch_sparse(pyG依赖模块)以及DGL中spmm的显存占用和时间

版本:

torch 1.7
dgl 0.5
pyg 1.6

torch原生,显存占用主要是对结点敏感(bakward的时候用的稠密张量)。

# -*- coding: utf-8 -*-
"""
@Author: 
@Time: 2020/12/1
@Description: 
"""
import torch
import numpy as np
import torch_sparse
import dgl
import time

n = 60000
nnz = 50000

np.random.seed(123)
torch.manual_seed(123)

rows = np.random.randint(0, n, nnz)
cols = np.random.randint(0, n, nnz)

values = torch.randn(nnz).cuda().requires_grad_(True)

# torch.sparse.mm
X_sparse = torch.sparse_coo_tensor([rows, cols], values, size=(n, n)).cuda().requires_grad_(True)
Y_dense = torch.randn((n, 200)).cuda().requires_grad_(True)

print("memory allocated before multi: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before multi: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

# t = torch_sparse.spmm(torch.tensor([rows, cols], dtype=torch.long).cuda(), values, n, n, Y_dense).sum()
torch.cuda.synchronize()
start_time = time.time()
t = torch.sparse.mm(X_sparse, Y_dense).sum()

print("memory allocated before backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

t.backward()

print("t: {}".format(t))
print("values grad: {}".format(values.grad))
# print("x.grad: {0} y.grad: {1}".format(X_sparse.grad, Y_dense.grad))
print("memory allocated after backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated after backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

torch.cuda.synchronize()
print("spmm and backward time is {} s".format(time.time() - start_time))

n = 60000, nnz = 50000时

Using backend: pytorch
memory allocated before multi: 0.049234944 GB
max memory allocated before multi: 0.049234944 GB
memory allocated before backward: 0.049235456 GB
max memory allocated before backward: 0.147145216 GB
t: 1653.47900390625
values grad: tensor([ -9.5381, -11.1868,  -7.3291,  ...,  -7.0068,  10.7648, -11.1320],
       device='cuda:0')
memory allocated after backward: 0.097670144 GB
max memory allocated after backward: 14.546705408 GB
spmm and backward time is 0.5331666469573975 s

n = 61000, nnz = 50000时(说明显存对结点敏感):

Using backend: pytorch
memory allocated before multi: 0.049800704 GB
max memory allocated before multi: 0.049800704 GB
memory allocated before backward: 0.049801216 GB
max memory allocated before backward: 0.148846592 GB
Traceback (most recent call last):
  File "/home/maqy/gnn/ginn_batch_compare/GINN-1130/memory_test.py", line 34, in <module>
    t.backward()
  File "/root/miniconda3/lib/python3.7/site-packages/torch/tensor.py", line 221, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
  File "/root/miniconda3/lib/python3.7/site-packages/torch/autograd/__init__.py", line 132, in backward
    allow_unreachable=True)  # allow_unreachable flag
RuntimeError: CUDA out of memory. Tried to allocate 13.86 GiB (GPU 0; 14.76 GiB total capacity; 94.99 MiB already allocated; 13.72 GiB free; 100.00 MiB reserved in total by PyTorch)

Process finished with exit code 1

torch_sparse(pyG依赖的包),显存占用主要对边的数量敏感。

import torch
import numpy as np
import torch_sparse
import dgl
import time

n = 60000
nnz = 50000

np.random.seed(123)
torch.manual_seed(123)

rows = np.random.randint(0, n, nnz)
cols = np.random.randint(0, n, nnz)

values = torch.randn(nnz).cuda().requires_grad_(True)

# torch.sparse.mm
# X_sparse = torch.sparse_coo_tensor([rows, cols], values, size=(n, n)).cuda().requires_grad_(True)
Y_dense = torch.randn((n, 200)).cuda().requires_grad_(True)

print("memory allocated before multi: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before multi: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

torch.cuda.synchronize()
start_time = time.time()
t = torch_sparse.spmm(torch.tensor([rows, cols], dtype=torch.long).cuda(), values, n, n, Y_dense).sum()

print("memory allocated before backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

t.backward()

print("t: {}".format(t))
print("values grad: {}".format(values.grad))
# print("x.grad: {0} y.grad: {1}".format(X_sparse.grad, Y_dense.grad))
print("memory allocated after backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated after backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

torch.cuda.synchronize()
print("spmm and backward time is {} s".format(time.time() - start_time))

n = 60000, nnz = 50,000时(使用torch原生的会OOM):

Using backend: pytorch
memory allocated before multi: 0.048434688 GB
max memory allocated before multi: 0.048434688 GB
memory allocated before backward: 0.089235456 GB
max memory allocated before backward: 0.17746944 GB
t: 1653.479248046875
values grad: tensor([ -9.5381, -11.1868,  -7.3291,  ...,  -7.0068,  10.7648, -11.1320],
       device='cuda:0')
memory allocated after backward: 0.096869888 GB
max memory allocated after backward: 0.20943616 GB
spmm and backward time is 0.03326892852783203 s

Process finished with exit code 0

但torch_sparse是使用的gather scatter模式,边的条数变多的话,显存会明显增长,比如:
n = 60000, nnz = 500,000时:

Using backend: pytorch
memory allocated before multi: 0.05023488 GB
max memory allocated before multi: 0.05023488 GB
memory allocated before backward: 0.458791424 GB
max memory allocated before backward: 0.90758144 GB
t: -14356.595703125
values grad: tensor([ 11.1778, -22.7249,  -4.5888,  ..., -24.6294,   4.4844,   4.5446],
       device='cuda:0')
memory allocated after backward: 0.100470272 GB
max memory allocated after backward: 1.662460416 GB
spmm and backward time is 0.17125725746154785 s

Process finished with exit code 0

n = 61000, nnz = 5,000,000时:

memory allocated before multi: 0.069206016 GB
max memory allocated before multi: 0.069206016 GB
memory allocated before backward: 4.149206528 GB
max memory allocated before backward: 8.197440512 GB
Traceback (most recent call last):
  File "/home/maqy/gnn/ginn_batch_compare/GINN-1130/memory_test.py", line 33, in <module>
    t.backward()
  File "/root/miniconda3/lib/python3.7/site-packages/torch/tensor.py", line 221, in backward
    torch.autograd.backward(self, gradient, retain_graph, create_graph)
  File "/root/miniconda3/lib/python3.7/site-packages/torch/autograd/__init__.py", line 132, in backward
    allow_unreachable=True)  # allow_unreachable flag
RuntimeError: CUDA out of memory. Tried to allocate 3.73 GiB (GPU 0; 14.76 GiB total capacity; 11.31 GiB already allocated; 2.50 GiB free; 11.32 GiB reserved in total by PyTorch)

Process finished with exit code 1

使用DGL的方式:

import torch
import numpy as np
import torch_sparse
import dgl
import time

n = 60000
nnz = 50000

np.random.seed(123)
torch.manual_seed(123)

rows = np.random.randint(0, n, nnz)
cols = np.random.randint(0, n, nnz)

values = torch.randn(nnz).cuda().requires_grad_(True)

# torch.sparse.mm
# X_sparse = torch.sparse_coo_tensor([rows, cols], values, size=(n, n)).cuda().requires_grad_(True)
Y_dense = torch.randn((n, 200)).cuda().requires_grad_(True)

# 注意,这里需要是cols在前,rows在后,计算出来的结果才是一样的
g = dgl.graph((cols, rows))
g = g.to("cuda:0")
g.srcdata['h'] = Y_dense
g.edata['e'] = values

print("memory allocated before multi: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before multi: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

torch.cuda.synchronize()
start_time = time.time()
t = dgl.ops.gspmm(g, 'mul', 'sum', lhs_data=g.srcdata['h'], rhs_data=g.edata['e']).sum()

print("memory allocated before backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

t.backward()

print("t: {}".format(t))
print("values grad: {}".format(values.grad))
# print("x.grad: {0} y.grad: {1}".format(X_sparse.grad, Y_dense.grad))
print("memory allocated after backward: {} GB".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated after backward: {} GB".format(torch.cuda.max_memory_allocated() / 10 ** 9))

torch.cuda.synchronize()
print("spmm and backward time is {} s".format(time.time() - start_time))

n = 60000, nnz = 50000时:

Using backend: pytorch
memory allocated before multi: 0.048434688 GB
max memory allocated before multi: 0.048434688 GB
memory allocated before backward: 0.0484352 GB
max memory allocated before backward: 0.09667072 GB
t: 1653.47900390625
values grad: tensor([ -9.5381, -11.1868,  -7.3291,  ...,  -7.0068,  10.7648, -11.1320],
       device='cuda:0')
memory allocated after backward: 0.096869888 GB
max memory allocated after backward: 0.145104896 GB
spmm and backward time is 0.02077507972717285 s

Process finished with exit code 0

n = 60000, nnz = 500,000时:

Using backend: pytorch
memory allocated before multi: 0.05023488 GB
max memory allocated before multi: 0.05023488 GB
memory allocated before backward: 0.050235392 GB
max memory allocated before backward: 0.098470912 GB
t: -14356.599609375
values grad: tensor([ 11.1778, -22.7249,  -4.5888,  ..., -24.6294,   4.4844,   4.5446],
       device='cuda:0')
memory allocated after backward: 0.100470272 GB
max memory allocated after backward: 0.14870528 GB
spmm and backward time is 0.10973095893859863 s

Process finished with exit code 0

n = 60000, nnz = 5,000,000时:

Using backend: pytorch
memory allocated before multi: 0.069206016 GB
max memory allocated before multi: 0.069206016 GB
memory allocated before backward: 0.069206528 GB
max memory allocated before backward: 0.117442048 GB
t: 7377.28125
values grad: tensor([ 18.3335, -23.7182,  -4.3458,  ...,  13.7045,   9.3865, -12.4589],
       device='cuda:0')
memory allocated after backward: 0.13744128 GB
max memory allocated after backward: 0.185676288 GB
spmm and backward time is 1.038252353668213 s

Process finished with exit code 0

用于验证DGL和torch_sparse结果一样的代码:

import torch
import numpy as np
import torch_sparse
import dgl
import dgl.function as fn

torch.manual_seed(123)
n = 10
nnz = 2

rows = np.random.randint(0, n, nnz)
cols = np.random.randint(0, n, nnz)

a = torch.randn(nnz)
values = a.cuda().requires_grad_(True)
values2 = a.cuda().requires_grad_(True)

# torch.sparse.mm
Y_dense = torch.randn((n, 2)).cuda().requires_grad_(True)

g = dgl.graph([])
g.add_nodes(n)
g.add_edges(cols, rows)
g = g.to("cuda:0")
g.srcdata['h'] = Y_dense
g.edata['e'] = values

print("memory allocated before multi: {}".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before multi: {}".format(torch.cuda.max_memory_allocated() / 10 ** 9))

t1 = dgl.ops.gspmm(g, 'mul', 'sum', lhs_data=g.srcdata['h'], rhs_data=g.edata['e']).sum()

t2 = torch_sparse.spmm(torch.tensor([rows, cols], dtype=torch.long).cuda(), values2, n, n, Y_dense).sum()

print("memory allocated before backward: {}".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated before backward: {}".format(torch.cuda.max_memory_allocated() / 10 ** 9))

t1.backward()
t2.backward()

print("t1: {}".format(t1))
print("t2: {}".format(t2))
print("values grad: {}".format(values.grad))
print("values2 grad: {}".format(values2.grad))
# print("x.grad: {0} y.grad: {1}".format(X_sparse.grad, Y_dense.grad))
print("memory allocated after backward: {}".format(torch.cuda.memory_allocated() / 10 ** 9))
print("max memory allocated after backward: {}".format(torch.cuda.max_memory_allocated() / 10 ** 9))

输出:

memory allocated before multi: 1.536e-06
max memory allocated before multi: 1.536e-06
memory allocated before backward: 3.584e-06
max memory allocated before backward: 4.096e-06
t1: 0.010851062834262848
t2: 0.010851062834262848
values grad: tensor([1.2198, 1.2198], device='cuda:0')
values2 grad: tensor([1.2198, 1.2198], device='cuda:0')
memory allocated after backward: 4.096e-06
max memory allocated after backward: 8.704e-06

Process finished with exit code 0

所需时间测试

速度上,n=60000,nnz=50000的情况下,计时spmm和backward的时间
torch原生:
spmm and backward time is 0.5331666469573975 s

torch_sparse:
spmm and backward time is 0.03326892852783203 s

DGL:
spmm and backward time is 0.02077507972717285 s

可以看到DGL的方式确实会快一些。

n = 60000, nnz = 500,000时:
torch原生:
spmm and backward time is 0.5481641292572021 s

torch_sparse:
spmm and backward time is 0.17125725746154785 s

DGL:
spmm and backward time is 0.10973095893859863 s

最后

以上就是坚定可乐为你收集整理的torch、torch_sparse、dgl三者spmm显存占用对比的全部内容,希望文章能够帮你解决torch、torch_sparse、dgl三者spmm显存占用对比所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(40)

评论列表共有 0 条评论

立即
投稿
返回
顶部