我是靠谱客的博主 健壮香烟,最近开发中收集的这篇文章主要介绍23、合并k个排序链表,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

一、题目

二、思路

        这里需要用到前边所学的合并两个升序链表,函数如下:

public ListNode mergeTwoLists(ListNode a, ListNode b) {
    if (a == null || b == null) {
        return a != null ? a : b;
    }
    ListNode head = new ListNode(0);
    ListNode tail = head, aPtr = a, bPtr = b;
    while (aPtr != null && bPtr != null) {
        if (aPtr.val < bPtr.val) {
            tail.next = aPtr;
            aPtr = aPtr.next;
        } else {
            tail.next = bPtr;
            bPtr = bPtr.next;
        }
        tail = tail.next;
    }
    tail.next = (aPtr != null ? aPtr : bPtr);
    return head.next;
}

 2.1、依次相加排列

        用一个变量 ans 来维护以及合并的链表,第 i次循环把第 i 个链表和 ans 合并,答案保存到 ans 中。

class Solution {
    //依次合并两个链表
    public ListNode mergeKLists(ListNode[] lists) {
        ListNode ans = null;
        for(int i = 0; i<lists.length; i++){
            ans = mergeTwoLists(ans,lists[i]);
        }
        return ans;
    }

    //合并两个链表
     public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }

}

  2.2、分治合并

        将 k 个链表配对并将同一对中的链表合并;第一轮合并以后, k个链表被合并成了 k/2 
  个链表,平均长度为  nk/2  ,然后是k/4个链表, k/8个链表等等;重复这一过程,直到我们得到了最终的有序链表。

        

class Solution {
   
    public ListNode mergeKLists(ListNode[] lists) {
     return merge(lists, 0, lists.length - 1);
    }

    public ListNode merge(ListNode[] lists, int l, int r) {
        if (l == r) {
            return lists[l];
        }
        if (l > r) {
            return null;
        }
        int mid = (l + r) >> 1;
        return mergeTwoLists(merge(lists, l, mid), merge(lists, mid + 1, r));
    }

    public ListNode mergeTwoLists(ListNode a, ListNode b) {
        if (a == null || b == null) {
            return a != null ? a : b;
        }
        ListNode head = new ListNode(0);
        ListNode tail = head, aPtr = a, bPtr = b;
        while (aPtr != null && bPtr != null) {
            if (aPtr.val < bPtr.val) {
                tail.next = aPtr;
                aPtr = aPtr.next;
            } else {
                tail.next = bPtr;
                bPtr = bPtr.next;
            }
            tail = tail.next;
        }
        tail.next = (aPtr != null ? aPtr : bPtr);
        return head.next;
    }

}

   2.2、使用优先队列合并

        这个方法和前两种方法的思路有所不同,我们需要维护当前每个链表没有被合并的元素的最前面一个,k 个链表就最多有 k 个满足这样条件的元素,每次在这些元素里面选取 val 属性最小的元素合并到答案中。在选取最小元素的时候,我们可以用优先队列来优化这个过程。

class Solution {
    class Status implements Comparable<Status> {
        int val;
        ListNode ptr;

        Status(int val, ListNode ptr) {
            this.val = val;
            this.ptr = ptr;
        }

        public int compareTo(Status status2) {
            return this.val - status2.val;
        }
    }

    PriorityQueue<Status> queue = new PriorityQueue<Status>();

    public ListNode mergeKLists(ListNode[] lists) {
     for (ListNode node: lists) {
            if (node != null) {
                queue.offer(new Status(node.val, node));
            }
        }
        ListNode head = new ListNode(0);
        ListNode tail = head;
        while (!queue.isEmpty()) {
            Status f = queue.poll();
            tail.next = f.ptr;
            tail = tail.next;
            if (f.ptr.next != null) {
                queue.offer(new Status(f.ptr.next.val, f.ptr.next));
            }
        }
        return head.next;
    }

}

三、对比分析

         

最后

以上就是健壮香烟为你收集整理的23、合并k个排序链表的全部内容,希望文章能够帮你解决23、合并k个排序链表所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(35)

评论列表共有 0 条评论

立即
投稿
返回
顶部