概述
pom.xml依赖项:
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.11_2.11</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>1.6.1</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-jdbc</artifactId>
<version>1.6.1</version>
</dependency>
配置文件Baseconf
package com.conf;
public class BaseConf {
public static final String USERNAME = "postgres";
public static final String PASSWORD = "passwd";
public static final String DRIVERNAME = "org.postgresql.Driver";
public static final String URL = "jdbc:postgresql://192.168.108.***:5432/***";
}
写入postgresql数据库
https://blog.csdn.net/weixin_43315211/article/details/88354331
package com.sink;
import com.conf.BaseConf;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
public class PostSQLSink extends RichSinkFunction<Tuple5<String, String,String,String,String>> {
private static final long serialVersionUID = 1L;
private Connection connection;
private PreparedStatement preparedStatement;
@Override
public void open(Configuration parameters) throws Exception {
Class.forName(BaseConf.DRIVERNAME);
connection = DriverManager.getConnection(BaseConf.URL, BaseConf.USERNAME, BaseConf.PASSWORD);
String sql = "insert into public.log_info(ip,time,courseid,status_code,referer) values (?,?,?,?,?)";
preparedStatement = connection.prepareStatement(sql);
super.open(parameters);
}
@Override
public void invoke(Tuple5<String, String, String, String, String> value,Context context) {
try {
preparedStatement.setString(1, value.f0);
preparedStatement.setString(2, value.f1);
preparedStatement.setString(3, value.f2);
preparedStatement.setString(4, value.f3);
preparedStatement.setString(5, value.f4);
System.out.println("Start insert");
preparedStatement.executeUpdate();
} catch (Exception e) {
e.printStackTrace();
}
}
@Override
public void close() throws Exception {
if (preparedStatement != null) {
preparedStatement.close();
}
if (connection != null) {
connection.close();
}
}
}
主函数:
package com.source;
import com.sink.PostSQLSink;
import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.tuple.Tuple5;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;
import java.util.Properties;
public class FlinkCleanKafka {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(5000); //检查点 每5000ms
// env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "master01:9092");//kafka的节点的IP或者hostName,多个使用逗号分隔
properties.setProperty("zookeeper.connect", "master01:2181");//zookeeper的节点的IP或者hostName,多个使用逗号进行分隔
properties.setProperty("group.id", "test22222");//flink consumer flink的消费者的group.id
FlinkKafkaConsumer011<String> myConsumer = new FlinkKafkaConsumer011<String>("flink_test"
, new SimpleStringSchema()
, properties);
// myConsumer.setStartFromEarliest(); //最早
myConsumer.setStartFromLatest(); //设置消费时间,最后
DataStream<String> stream = env.addSource(myConsumer);
// stream.print();
DataStream CleanData = stream.map(new MapFunction<String, Tuple5<String, String, String, String, String>>() {
@Override
public Tuple5<String, String, String, String, String> map(String value) {
String[] data = value.split("\t");
// for(String str:data){
// System.out.println(str);
// }
String CourseID = null;
String url = data[2].split(" ")[1];
// System.out.println("url: "+url);
if (url.startsWith("/class")) {
String CourseHTML = url.split("/")[2];
CourseID = CourseHTML.substring(0, CourseHTML.lastIndexOf("."));
// System.out.println("CourseID: "+CourseID);
}
return Tuple5.of(data[0], data[1], CourseID, data[3], data[4]);
}
}).filter(new FilterFunction<Tuple5<String, String, String, String, String>>() {
@Override
public boolean filter(Tuple5<String, String, String, String, String> value) {
return value.f2 != null;
}
});
CleanData.print();
CleanData.addSink(new PostSQLSink());
env.execute("Flink kafka");
}
}
kafka的数据生成可参考以下文档
https://blog.csdn.net/weixin_43315211/article/details/88424903
最后
以上就是虚幻大树为你收集整理的flink连接kafka,postgresql sink的全部内容,希望文章能够帮你解决flink连接kafka,postgresql sink所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复