我是靠谱客的博主 愉快微笑,最近开发中收集的这篇文章主要介绍使用scater包对单细胞转录组数据进行降维分析,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

欢迎关注”生信修炼手册”!

对于单细胞转录组的数据,常用的降维方法有以下3种

  1. PCA

  2. t-SNE

  3. Difffusion map

通过scater这个R包,可以方便的进行降维分析,安装方式如下

BiocManager::install("scater", version = "3.8")

具体的操作步骤如下

1. 构建SingleCellExperiment对象

对于单细胞的数据,专门制定了一个名为SingleCellExperiment的类,用来存储相关数据。

我们首先要做的就将相关数据导入到R中,只需要下两种数据即可,第一种是基因的表达量数据,每一行代表一个基因,每一列代表一个细胞,示意如下

第二种是细胞的相关信息,可以是细胞的名字,采样时间,来源组织,处理条件等metadata, 每一行是一个细胞,每一列是一种属性,示意如下

通过这两种数据,就可以构建出一个SingleCellExperiment对象,代码如下

sce <- SingleCellExperiment(
  assays = list(counts = sc_example_counts),
  colData = sc_example_cell_info
)
# 归一化
sce <- normalize(sce)

注意必须要进行归一化操作。

2. PCA

PCA是应用的最广泛的降维方法,在scater中,通过一下方式可以快速的得到PCA降维后的结果,代码如下

plotPCA(sce)

生成的图片如下

2. t-SNE

t-SNE降维算法的代码如下

set.seed(1000)
sce <- runTSNE(
  sce,
  perplexity = 10,
  use_dimred = "PCA",
  n_dimred = 10)
# 画图
plotTSNE(sce, colour_by="Treatment")

生成的图片如下

本质上是通过调用Rtsne这个包来进行t-SNE降维分析。

3. Diffusion Map

Diffusion Map简称DM降维算法,代码如下

sce <- runDiffusionMap(sce)
plotDiffusionMap(sce)

生成的图片如下

本质上是通过调用destiny这个包来进行降维分析。

scater这个R包不仅提供了各种降维分析的算法,还提供了数据QC, 基因表达量可视化等功能,更多用法请参阅官方文档。

·end·

—如果喜欢,快分享给你的朋友们吧—

扫描关注微信号,更多精彩内容等着你!

最后

以上就是愉快微笑为你收集整理的使用scater包对单细胞转录组数据进行降维分析的全部内容,希望文章能够帮你解决使用scater包对单细胞转录组数据进行降维分析所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(35)

评论列表共有 0 条评论

立即
投稿
返回
顶部