概述
Face-Detector-1MB-with-landmark
实现功能
Retinaface-mobile0.25的训练/测试/评估/ncnn C++推理
Face-Detector-1MB slim和RFB版本的训练/测试/评估/ncnn C++推理
人脸5个关键点检测
支持onnx导出
网络parameter和flop计算
带有关键点检测的超轻量级人脸检测器
提供了一系列适合移动端部署包含关键的人脸检测器: 对Retinaface-mobile0.25修改anchor尺寸,使其更适合边缘计算; 重新实现了Face-Detector-1MB 并添加了关键点检测和ncnn C++部署功能, 在绝大部分情况下精度均好于原始版本.
测试的运行环境
Ubuntu18.04
Python3.7
Pytorch1.2
CUDA10.0 + CUDNN7.5
精度
Widerface测试
在wider face val精度(单尺度输入分辨率:320*240)
方法
Easy
Medium
Hard
libfacedetection v1(caffe)
0.65
0.5
0.233
libfacedetection v2(caffe)
0.714
0.585
0.306
version-slim(原版)
0.765
0.662
0.385
version-RFB(原版)
0.784
0.688
0.418
version-slim(our)
0.795
0.683
0.34.5
version-RFB(our)
0.814
0.710
0.363
Retinaface-Mobilenet-0.25(our)
0.811
0.697
0.376
在wider face val精度(单尺度输入分辨率:640*480)
方法
Easy
Medium
Hard
libfacedetection v1(caffe)
0.741
0.683
0.421
libfacedetection v2(caffe)
0.773
0.718
0.485
version-slim(原版)
0.757
0.721
0.511
version-RFB(原版)
0.851
0.81
0.541
version-slim(our)
0.850
0.808
0.595
version-RFB(our)
0.865
0.828
0.622
Retinaface-Mobilenet-0.25(our)
0.873
0.836
0.638
ps: 测试的时候,长边为320 或者 640 ,图像等比例缩放.
Parameter and flop
方法
parameter(M)
flop(M)
version-slim(our)
0.343
98.793
version-RFB(our)
0.359
118.435
Retinaface-Mobilenet-0.25(our)
0.426
193.921
ps: 320*240作为输入
Contents
Installation
Clone and install
Pytorch version 1.1.0+ and torchvision 0.3.0+ are needed.
Codes are based on Python 3
Data
The dataset directory as follows:
./data/widerface/
train/
images/
label.txt
val/
images/
wider_val.txt
ps: wider_val.txt only include val file names but not label information.
We provide the organized dataset we used as in the above directory structure.
Link: from google cloud or baidu cloud Password: ruck
Training
Before training, you can check network configuration (e.g. batch_size, min_sizes and steps etc..) in data/config.py and train.py.
Train the model using WIDER FACE:
CUDA_VISIBLE_DEVICES=0 python train.py --network mobile0.25 or
CUDA_VISIBLE_DEVICES=0 python train.py --network slim or
CUDA_VISIBLE_DEVICES=0 python train.py --network RFB
If you don't want to train, we also provide a trained model on ./weights
mobilenet0.25_Final.pth
RBF_Final.pth
slim_Final.pth
Evaluation
Evaluation widerface val
Generate txt file
python test_widerface.py --trained_model weight_file --network mobile0.25 or slim or RFB
Evaluate txt results. Demo come from Here
cd ./widerface_evaluate
python setup.py build_ext --inplace
python evaluation.py
You can also use widerface official Matlab evaluate demo in Here
C++_inference _ncnn
Generate onnx file
python convert_to_onnx.py --trained_model weight_file --network mobile0.25 or slim or RFB
Onnx file change to ncnn(*.param and *.param)
cp *.onnx ./Face_Detector_ncnn/tools
cd ./Face_Detector_ncnn/tools
./onnx2ncnn face.param face.bin
Move *.param and *.bin to model
cp face.param ../model
cp face.bin ../model
Build Project(set opencv path in CmakeList.txt)
mkdir build
cd build
cmake ..
make -j4
run
./FaceDetector *.jpg
We also provide the converted file in "./model".
face.param
face.bin
References
@inproceedings{deng2019retinaface,
title={RetinaFace: Single-stage Dense Face Localisation in the Wild},
author={Deng, Jiankang and Guo, Jia and Yuxiang, Zhou and Jinke Yu and Irene Kotsia and Zafeiriou, Stefanos},
booktitle={arxiv},
year={2019}
最后
以上就是虚心路人为你收集整理的caffe 人脸关键点检测_1M人脸检测模型(含关键点)的全部内容,希望文章能够帮你解决caffe 人脸关键点检测_1M人脸检测模型(含关键点)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复