我是靠谱客的博主 聪明书包,最近开发中收集的这篇文章主要介绍dlib+opencv3.2 face detection,face landmark detection,face pose estimation人脸检测,人脸关键点检测(68点),人脸位姿估计,觉得挺不错的,现在分享给大家,希望可以做个参考。
概述
注:使用的代码为https://github.com/lincolnhard/head-pose-estimation代码,略做了修改。
#include <dirent.h>
#include <string.h>
#include <vector>
#include <string>
#include <iostream>
#include <chrono>
#include <dlib/opencv.h>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
using namespace std;
//Intrisics can be calculated using opencv sample code under opencv/sources/samples/cpp/tutorial_code/calib3d
//Normally, you can also apprximate fx and fy by image width, cx by half image width, cy by half image height instead
//没有相机参数的话,可以使用宽度估计焦距,cx和cy分别为宽度和高度的一半
double K[9] = { 12.80000e+002, 0.0, 6.40000000e+002, 0.0, 12.800000e+002, 3.60000000e+002, 0.0, 0.0, 1.0 };
double D[5] = { 7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000 };
//读图片
vector<string> imageSequence;
void LoadImages(const std::string& strPathToSequence, std::vector< std::string >& strImage)
{
std::string absolutePath = strPathToSequence;
DIR* dir = opendir(absolutePath.c_str());
struct dirent* ptr;
while ((ptr = readdir(dir)) != NULL) {
//if(ptr->d_name != "." && ptr->d_name != "..")
if (strcmp(ptr->d_name,".") != 0 && strcmp(ptr->d_name,"..") != 0) {
std::string subDirect = strPathToSequence;
if(ptr->d_type == 8) {
//cout<<ptr->d_name<<endl;
std::string loadPath = subDirect + "/";
loadPath += ptr->d_name;
// std::cout<<loadPath<<std::endl;
strImage.push_back(loadPath);
}
}
}
}
//argv1是.dat文件所在的路径,可以在[http://dlib.net/files/](http://dlib.net/files/)上下载 shape_predictor_68_face_landmarks.dat.bz2文件并使用bzip2 -d解压。
//argv2是图片所在的文件目录
int main(int argc, char** argv)
{
dlib::frontal_face_detector detector = dlib::get_frontal_face_detector();
dlib::shape_predictor predictor;
dlib::deserialize(argv[1]) >> predictor;
//fill in cam intrinsics and distortion coefficients
cv::Mat cam_matrix = cv::Mat(3, 3, CV_64FC1, K);
cv::Mat dist_coeffs = cv::Mat(5, 1, CV_64FC1, D);
//fill in 3D ref points(world coordinates), model referenced from http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp
std::vector<cv::Point3d> object_pts;
object_pts.push_back(cv::Point3d(6.825897, 6.760612, 4.402142)); //#33 left brow left corner
object_pts.push_back(cv::Point3d(1.330353, 7.122144, 6.903745)); //#29 left brow right corner
object_pts.push_back(cv::Point3d(-1.330353, 7.122144, 6.903745)); //#34 right brow left corner
object_pts.push_back(cv::Point3d(-6.825897, 6.760612, 4.402142)); //#38 right brow right corner
object_pts.push_back(cv::Point3d(5.311432, 5.485328, 3.987654)); //#13 left eye left corner
object_pts.push_back(cv::Point3d(1.789930, 5.393625, 4.413414)); //#17 left eye right corner
object_pts.push_back(cv::Point3d(-1.789930, 5.393625, 4.413414)); //#25 right eye left corner
object_pts.push_back(cv::Point3d(-5.311432, 5.485328, 3.987654)); //#21 right eye right corner
object_pts.push_back(cv::Point3d(2.005628, 1.409845, 6.165652)); //#55 nose left corner
object_pts.push_back(cv::Point3d(-2.005628, 1.409845, 6.165652)); //#49 nose right corner
object_pts.push_back(cv::Point3d(2.774015, -2.080775, 5.048531)); //#43 mouth left corner
object_pts.push_back(cv::Point3d(-2.774015, -2.080775, 5.048531)); //#39 mouth right corner
object_pts.push_back(cv::Point3d(0.000000, -3.116408, 6.097667)); //#45 mouth central bottom corner
object_pts.push_back(cv::Point3d(0.000000, -7.415691, 4.070434)); //#6 chin corner
//2D ref points(image coordinates), referenced from detected facial feature
std::vector<cv::Point2d> image_pts;
//result
cv::Mat rotation_vec; //3 x 1
cv::Mat rotation_mat; //3 x 3 R
cv::Mat translation_vec; //3 x 1 T
cv::Mat pose_mat = cv::Mat(3, 4, CV_64FC1); //3 x 4 R | T
cv::Mat euler_angle = cv::Mat(3, 1, CV_64FC1);
//reproject 3D points world coordinate axis to verify result pose
std::vector<cv::Point3d> reprojectsrc;
reprojectsrc.push_back(cv::Point3d(10.0, 10.0, 10.0));
reprojectsrc.push_back(cv::Point3d(10.0, 10.0, -10.0));
reprojectsrc.push_back(cv::Point3d(10.0, -10.0, -10.0));
reprojectsrc.push_back(cv::Point3d(10.0, -10.0, 10.0));
reprojectsrc.push_back(cv::Point3d(-10.0, 10.0, 10.0));
reprojectsrc.push_back(cv::Point3d(-10.0, 10.0, -10.0));
reprojectsrc.push_back(cv::Point3d(-10.0, -10.0, -10.0));
reprojectsrc.push_back(cv::Point3d(-10.0, -10.0, 10.0));
//reprojected 2D points
std::vector<cv::Point2d> reprojectdst;
reprojectdst.resize(8);
//temp buf for decomposeProjectionMatrix()
cv::Mat out_intrinsics = cv::Mat(3, 3, CV_64FC1);
cv::Mat out_rotation = cv::Mat(3, 3, CV_64FC1);
cv::Mat out_translation = cv::Mat(3, 1, CV_64FC1);
//text on screen
std::ostringstream outtext;
LoadImages(argv[2],imageSequence);
//main loop
int order = 0;
for(auto& file : imageSequence)
{
// Grab a frame
cv::Mat ori,temp;
// cap >> temp;
//使用灰度图,并缩小图片大小,这里原图是1280*720,只使用右边一半,然后再resize宽高各一半,可以显著提高运行速度。
ori = cv::imread(file,0);//grayscale
ori(cv::Rect(640,0,640,720)).copyTo(temp);
resize(temp, cv::Size(320,360));
if(temp.rows <= 0 || temp.cols <= 0)
break;
order += 1;
const auto loadframeTimeend = std::chrono::high_resolution_clock::now();
//参见dlib图片格式说明,rgb图,bgr_pixel是其中一种么,灰度图使用unsigned char
// dlib::cv_image<dlib::bgr_pixel> cimg(temp);
dlib::cv_image<unsigned char> cimg(temp);
// Detect faces
std::vector<dlib::rectangle> faces = detector(cimg);
const auto detectTimeend = std::chrono::high_resolution_clock::now();
const auto detectTimeSec = (double)std::chrono::duration_cast<std::chrono::nanoseconds>(detectTimeend - loadframeTimeend).count()* 1e-9;
cout<< "detect face time: " <<std::to_string(detectTimeSec) << " seconds."<<endl;
// Find the pose of each face
if (faces.size() > 0)
{
//track features
dlib::full_object_detection shape = predictor(cimg, faces[0]);
//draw features
for (unsigned int i = 0; i < 68; ++i)
{
cv::circle(temp, cv::Point(shape.part(i).x(), shape.part(i).y()), 2, cv::Scalar(0, 0, 255), -1);
}
//fill in 2D ref points, annotations follow https://ibug.doc.ic.ac.uk/resources/300-W/
image_pts.push_back(cv::Point2d(shape.part(17).x(), shape.part(17).y())); //#17 left brow left corner
image_pts.push_back(cv::Point2d(shape.part(21).x(), shape.part(21).y())); //#21 left brow right corner
image_pts.push_back(cv::Point2d(shape.part(22).x(), shape.part(22).y())); //#22 right brow left corner
image_pts.push_back(cv::Point2d(shape.part(26).x(), shape.part(26).y())); //#26 right brow right corner
image_pts.push_back(cv::Point2d(shape.part(36).x(), shape.part(36).y())); //#36 left eye left corner
image_pts.push_back(cv::Point2d(shape.part(39).x(), shape.part(39).y())); //#39 left eye right corner
image_pts.push_back(cv::Point2d(shape.part(42).x(), shape.part(42).y())); //#42 right eye left corner
image_pts.push_back(cv::Point2d(shape.part(45).x(), shape.part(45).y())); //#45 right eye right corner
image_pts.push_back(cv::Point2d(shape.part(31).x(), shape.part(31).y())); //#31 nose left corner
image_pts.push_back(cv::Point2d(shape.part(35).x(), shape.part(35).y())); //#35 nose right corner
image_pts.push_back(cv::Point2d(shape.part(48).x(), shape.part(48).y())); //#48 mouth left corner
image_pts.push_back(cv::Point2d(shape.part(54).x(), shape.part(54).y())); //#54 mouth right corner
image_pts.push_back(cv::Point2d(shape.part(57).x(), shape.part(57).y())); //#57 mouth central bottom corner
image_pts.push_back(cv::Point2d(shape.part(8).x(), shape.part(8).y())); //#8 chin corner
//calc pose
cv::solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs, rotation_vec, translation_vec);
//reproject
cv::projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix, dist_coeffs, reprojectdst);
//draw axis
cv::line(temp, reprojectdst[0], reprojectdst[1], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[1], reprojectdst[2], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[2], reprojectdst[3], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[3], reprojectdst[0], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[4], reprojectdst[5], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[5], reprojectdst[6], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[6], reprojectdst[7], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[7], reprojectdst[4], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[0], reprojectdst[4], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[1], reprojectdst[5], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[2], reprojectdst[6], cv::Scalar(0, 0, 255));
cv::line(temp, reprojectdst[3], reprojectdst[7], cv::Scalar(0, 0, 255));
//calc euler angle
cv::Rodrigues(rotation_vec, rotation_mat);
cv::hconcat(rotation_mat, translation_vec, pose_mat);
cv::decomposeProjectionMatrix(pose_mat, out_intrinsics, out_rotation, out_translation, cv::noArray(), cv::noArray(), cv::noArray(), euler_angle);
//show angle result
outtext << "X: " << std::setprecision(3) << euler_angle.at<double>(0);
cv::putText(temp, outtext.str(), cv::Point(50, 40), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0));
outtext.str("");
outtext << "Y: " << std::setprecision(3) << euler_angle.at<double>(1);
cv::putText(temp, outtext.str(), cv::Point(50, 60), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0));
outtext.str("");
outtext << "Z: " << std::setprecision(3) << euler_angle.at<double>(2);
cv::putText(temp, outtext.str(), cv::Point(50, 80), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 0));
outtext.str("");
image_pts.clear();
}
//press esc to end
string result = "./"+to_string(order) + ".jpg";
// cv::imwrite(result,temp);
//使用argv3控制是否显示
if(strcmp(argv[3], "SHOW") == 0){
cv::imshow("demo",temp);
cv::waitKey(1);
}
unsigned char key = cv::waitKey(1);
if (key == 27)
{
break;
}
}
return 0;
}
CMakeLists.txt
CMAKE_MINIMUM_REQUIRED(VERSION 3.2)
PROJECT(project)
SET(CMAKE_C_COMPILER g++)
if(CMAKE_COMPILER_IS_GNUCXX)
add_compile_options(-std=c++11)
message(STATUS "optional:-std=c++11")
endif(CMAKE_COMPILER_IS_GNUCXX)
SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O3")
SET(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG")
SET(CMAKE_BUILE_TYPE RELEASE)
link_directories(/usr/local/lib)
ADD_EXECUTABLE(${PROJECT_NAME} video_test_shape.cpp)
TARGET_LINK_LIBRARIES(${PROJECT_NAME} opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs opencv_calib3d opencv_video opencv_videoio dlib lapack cblas )
最后
以上就是聪明书包为你收集整理的dlib+opencv3.2 face detection,face landmark detection,face pose estimation人脸检测,人脸关键点检测(68点),人脸位姿估计的全部内容,希望文章能够帮你解决dlib+opencv3.2 face detection,face landmark detection,face pose estimation人脸检测,人脸关键点检测(68点),人脸位姿估计所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复