概述
使用tensorflow实现一个简单的卷积神经,使用的数据集是MNIST,本节将使用两个卷积层加一个全连接层,构建一个简单有代表性的卷积网络。
代码是按照书上的敲的,第一步就是导入数据库,设置节点的初始值,Tf.nn.conv2d是tensorflow中的2维卷积,参数x是输入,W是卷积的参数,比如【5,5,1,32】,前面两个数字代表卷积核的尺寸,第三个数字代表有几个通道,比如灰度图是1,彩色图是3.最后一个代表卷积的数量,总的实现代码如下:
- from tensorflow.examples.tutorials.mnist import input_data
- import tensorflow as tf
- mnist = input_data.read_data_sets("MNSIT_data/", one_hot=True)
- sess = tf.InteractiveSession()
- # In[2]:
- #由于W和b在各层中均要用到,先定义乘函数。
- #tf.truncated_normal:截断正态分布,即限制范围的正态分布
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
- # In[7]:
- #bias初始化值0.1.
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- # In[12]:
- #tf.nn.conv2d:二维的卷积
- #conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,data_format=None, name=None)
- #filter:A 4-D tensor of shape
- # `[filter_height, filter_width, in_channels, out_channels]`
- #strides:步长,都是1表示所有点都不会被遗漏。1-D 4值,表示每歌dim的移动步长。
- # padding:边界的处理方式,“SAME"、"VALID”可选
- def conv2d(x, W):
- return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
- #tf.nn.max_pool:最大值池化函数,即求2*2区域的最大值,保留最显著的特征。
- #max_pool(value, ksize, strides, padding, data_format="NHWC", name=None)
- #ksize:池化窗口的尺寸
- #strides:[1,2,2,1]表示横竖方向步长为2
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides = [1, 2, 2, 1], padding='SAME')
- x = tf.placeholder(tf.float32, [None, 784])
- y_ = tf.placeholder(tf.float32, [None, 10])
- #tf.reshape:tensor的变形函数。
- #-1:样本数量不固定
- #28,28:新形状的shape
- #1:颜色通道数
- x_image = tf.reshape(x, [-1, 28, 28, 1])
- #卷积层包含三部分:卷积计算、激活、池化
- #[5,5,1,32]表示卷积核的尺寸为5×5, 颜色通道为1, 有32个卷积核
- W_conv1 = weight_variable([5, 5, 1, 32])
- b_conv1 = bias_variable([32])
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
- h_pool1 = max_pool_2x2(h_conv1)
- W_conv2 = weight_variable([5, 5, 32, 64])
- b_conv2 = bias_variable([64])
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
- h_pool2 = max_pool_2x2(h_conv2)
- #经过2次2×2的池化后,图像的尺寸变为7×7,第二个卷积层有64个卷积核,生成64类特征,因此,卷积最后输出为7×7×64.
- #tensor进入全连接层之前,先将64张二维图像变形为1维图像,便于计算。
- W_fc1 = weight_variable([7*7*64, 1024])
- b_fc1 = bias_variable([1024])
- h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- #对全连接层做dropot
- keep_prob = tf.placeholder(tf.float32)
- h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob)
- #又一个全连接后foftmax分类
- W_fc2 = weight_variable([1024, 10])
- b_fc2 = bias_variable([10])
- y_conv = tf.nn.softmax(tf.matmul(h_fc1_dropout, W_fc2) + b_fc2)
- cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), reduction_indices=[1]))
- #AdamOptimizer:Adam优化函数
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- #训练,并且每100个batch计算一次精度
- tf.global_variables_initializer().run()
- for i in range(20000):
- batch = mnist.train.next_batch(50)
- if i%100 == 0:
- train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
- print("step %d, training accuracy %g" %(i, train_accuracy))
- train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})
- #在测试集上测试
- print("test accuracy %g"%accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))
最后
以上就是儒雅电灯胆为你收集整理的tensorflow学习之路——实现简单的卷积网络的全部内容,希望文章能够帮你解决tensorflow学习之路——实现简单的卷积网络所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复