我是靠谱客的博主 寒冷电话,最近开发中收集的这篇文章主要介绍《Tensorflow机器学习实战指南》神经网络算法,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

《Tensorflow机器学习实战指南》神经网络算法,示例代码中,有几处小的错误,做了修改。

 

1. 是数据做归一化的时候,多做了一次,需要删除。

2. 训练完成后,使用真实数据做预测时,数据做归一化时少了两个变量。(ValueError: setting an array element with a sequence.)

3. 网络数据运行时拿不下来,建议直接将url放到浏览器上获取数据后直接保存到本地。当然,也可以使用urllib.request进行处理,这里是直接通过浏览器下传下来进行处理的,这样处理起来比较方便。

 

 

#!/usr/bin/env python3

# -*- coding: utf-8 -*-


 

"""

Using a Multiple Layer Network

------------------------------

We will illustrate how to use a Multiple

Layer Network in TensorFlow

 

Low Birthrate data:

 

Columns Variable Abbreviation

----------------------------------------------------------------

Low Birth Weight (0 = Birth Weight >= 2500g, LOW

1 = Birth Weight < 2500g)

Age of the Mother in Years AGE

Weight in Pounds at the Last Menstrual Period LWT

Race (1 = White, 2 = Black, 3 = Other) RACE

Smoking Status During Pregnancy (1 = Yes, 0 = No) SMOKE

History of Premature Labor (0 = None 1 = One, etc.) PTL

History of Hypertension (1 = Yes, 0 = No) HT

Presence of Uterine Irritability (1 = Yes, 0 = No) UI

Birth Weight in Grams BWT

-----------------------------------------------------------------

 

The multiple neural network layer we will create will be composed of

three fully connected hidden layers, with node sizes 50, 25, and 5

 

"""

import tensorflow as tf

import matplotlib.pyplot as plt

import csv

import os

import numpy as np

import requests

from tensorflow.python.framework import ops

 

# name of data file

birth_weight_file = r'/home/liuqp1/Documents/wspy/tensorflow_workspacebirth_weight.csv'

birthdata_url = r'https://github.com/nfmcclure/tensorflow_cookbook/raw/master/01_Introduction/07_Working_with_Data_Sources/birthweight_data/birthweight.dat'

 

# Download data and create data file if file does not exist in current directory

if not os.path.exists(birth_weight_file):

birth_file = requests.get(birthdata_url)

birth_data = birth_file.text.split('rn')

birth_header = birth_data[0].split('t')

birth_data = [[float(x) for x in y.split('t') if len(x) >= 1]

for y in birth_data[1:] if len(y) >= 1]

with open(birth_weight_file, "w") as f:

writer = csv.writer(f)

writer.writerows([birth_header])

writer.writerows(birth_data)

 

# read birth weight data into memory

birth_data = []

with open(birth_weight_file, newline='') as csvfile:

csv_reader = csv.reader(csvfile)

birth_header = next(csv_reader)

for row in csv_reader:

birth_data.append(row)

 

birth_data = [[float(x) for x in row] for row in birth_data]

 

# Extract y-target (birth weight)

y_vals = np.array([x[8] for x in birth_data])

 

# Filter for features of interest

cols_of_interest = ['AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI']

x_vals = np.array([[x[ix] for ix, feature in enumerate(birth_header) if feature in cols_of_interest]

for x in birth_data])

 

# Reset the graph for new run

ops.reset_default_graph()

 

# Create graph session

sess = tf.Session()

 

# set batch size for training

batch_size = 100

 

# Set random seed to make results reproducible

seed = 4

np.random.seed(seed)

tf.set_random_seed(seed)

 

# Split data into train/test = 80%/20%

train_indices = np.random.choice(len(x_vals), round(len(x_vals)*0.8), replace=False)

test_indices = np.array(list(set(range(len(x_vals))) - set(train_indices)))

x_vals_train = x_vals[train_indices]

x_vals_test = x_vals[test_indices]

y_vals_train = y_vals[train_indices]

y_vals_test = y_vals[test_indices]

 

# Normalize by column (min-max norm to be between 0 and 1)

def normalize_cols(m, col_min=np.array([None]), col_max=np.array([None])):

if not col_min[0]:

col_min = m.min(axis=0)

if not col_max[0]:

col_max = m.max(axis=0)

return (m - col_min) / (col_max - col_min), col_min, col_max


 

x_vals_train, train_min, train_max = np.nan_to_num(normalize_cols(x_vals_train))

x_vals_test, _, _ = np.nan_to_num(normalize_cols(x_vals_test, train_min, train_max))

 

print('x_vals_train: ', x_vals_train)

print('x_vals_test: ', x_vals_test)

 

# x_vals_train = np.nan_to_num(normalize_cols(x_vals_train, train_max, train_min))

# x_vals_test = np.nan_to_num(normalize_cols(x_vals_test, train_max, train_min))

 

# print('x_vals_train: ', x_vals_train)

# print('x_vals_test: ', x_vals_test)

 

# Define Variable Functions (weights and bias)

def init_weight(shape, st_dev):

weight = tf.Variable(tf.random_normal(shape, stddev=st_dev))

return weight


 

def init_bias(shape, st_dev):

bias = tf.Variable(tf.random_normal(shape, stddev=st_dev))

return bias

 

# Create Placeholders

x_data = tf.placeholder(shape=[None, 7], dtype=tf.float32)

y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)


 

# Create a fully connected layer:

def fully_connected(input_layer, weights, biases):

layer = tf.add(tf.matmul(input_layer, weights), biases)

return tf.nn.relu(layer)

 

# -------Create the first layer (50 hidden nodes)--------

weight_1 = init_weight(shape=[7, 25], st_dev=10.0)

bias_1 = init_bias(shape=[25], st_dev=10.0)

layer_1 = fully_connected(x_data, weight_1, bias_1)

 

# -------Create second layer (25 hidden nodes)--------

weight_2 = init_weight(shape=[25, 10], st_dev=10.0)

bias_2 = init_bias(shape=[10], st_dev=10.0)

layer_2 = fully_connected(layer_1, weight_2, bias_2)


 

# -------Create third layer (5 hidden nodes)--------

weight_3 = init_weight(shape=[10, 3], st_dev=10.0)

bias_3 = init_bias(shape=[3], st_dev=10.0)

layer_3 = fully_connected(layer_2, weight_3, bias_3)


 

# -------Create output layer (1 output value)--------

weight_4 = init_weight(shape=[3, 1], st_dev=10.0)

bias_4 = init_bias(shape=[1], st_dev=10.0)

final_output = fully_connected(layer_3, weight_4, bias_4)

 

# Declare loss function (L1)

loss = tf.reduce_mean(tf.abs(y_target - final_output))

 

# Declare optimizer

my_opt = tf.train.AdamOptimizer(0.05)

train_step = my_opt.minimize(loss)

 

# Initialize Variables

init = tf.global_variables_initializer()

sess.run(init)

 

# Training loop

loss_vec = []

test_loss = []

for i in range(200):

rand_index = np.random.choice(len(x_vals_train), size=batch_size)

rand_x = x_vals_train[rand_index]

rand_y = np.transpose([y_vals_train[rand_index]])

sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y})

 

temp_loss = sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})

loss_vec.append(temp_loss)

test_temp_loss = sess.run(loss, feed_dict={x_data: x_vals_test, y_target: np.transpose([y_vals_test])})

test_loss.append(test_temp_loss)

 

if (i+1) % 25 == 0:

print('Generation: ' + str(i+1) + '. Loss = ' + str(temp_loss))

 

# Plot loss (MSE) over time

plt.plot(loss_vec, 'k-', label='Train Loss')

plt.plot(test_loss, 'r--', label='Test Loss')

plt.title('Loss (MSE) per Generation')

plt.legend(loc='upper right')

plt.xlabel('Generation')

plt.ylabel('Loss')

plt.show()

 

# Model Accuracy

actuals = np.array([x[0] for x in birth_data])

test_actuals = actuals[test_indices]

train_actuals = actuals[train_indices]

test_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_test})]

train_preds = [x[0] for x in sess.run(final_output, feed_dict={x_data: x_vals_train})]

test_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in test_preds])

train_preds = np.array([0.0 if x < 2500.0 else 1.0 for x in train_preds])

# Print out accuracies

test_acc = np.mean([x == y for x, y in zip(test_preds, test_actuals)])

train_acc = np.mean([x == y for x, y in zip(train_preds, train_actuals)])

print('On predicting the category of low birthweight from regression output (<2500g):')

print('Test Accuracy: {}'.format(test_acc))

print('Train Accuracy: {}'.format(train_acc))

 

# Evaluate new points on the model

# Need vectors of 'AGE', 'LWT', 'RACE', 'SMOKE', 'PTL', 'HT', 'UI'

new_data = np.array([[35, 185, 1., 0., 0., 0., 1.],

[18, 160, 0., 1., 0., 0., 1.]])

# new_data_scaled = np.nan_to_num(normalize_cols(new_data, train_max, train_min))

new_data_scaled, _, _ = np.nan_to_num(normalize_cols(new_data, train_min, train_max))

 

print('new_data_scaled', new_data_scaled)

 

new_logits = [x[0] for x in sess.run(final_output, feed_dict={x_data: new_data_scaled})]

 

new_preds = np.array([1.0 if x < 2500.0 else 0.0 for x in new_logits])

 

print('New Data Predictions: {}'.format(new_preds))

 

最后

以上就是寒冷电话为你收集整理的《Tensorflow机器学习实战指南》神经网络算法的全部内容,希望文章能够帮你解决《Tensorflow机器学习实战指南》神经网络算法所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(47)

评论列表共有 0 条评论

立即
投稿
返回
顶部