目录
IntelliJ IDEA
一、编写WordCount程序
1.创建一个Maven项目WordCount并导入依赖
2.编写代码
3.打包插件
4.创建数据,打包完,导入包
5.集群测试(在包的路径下输入)
hdfs的方式:
本地方式:
6.查看结果
二、远程调用Spark
1.启动Spark下的start-all.sh
Jps查看进程:
2.导入依赖
3.编写代码
4.打包
5.在把代码加到创建sparkConf的后面
原代码
修改后,加上包的路径
6.运行输出
IntelliJ IDEA
一、编写WordCount程序
1.创建一个Maven项目WordCount并导入依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>0607</artifactId>
<version>1.0-SNAPSHOT</version>
<!--开始-->
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>
<build>
<finalName>WordCount</finalName>
<plugins>
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
<!--结束-->
</project>
2.编写代码
import org.apache.spark.{SparkConf, SparkContext}
/**
* @program: IntelliJ IDEA
* @description: 编写spark版本的WordCount
* @create: 2022-06-08 11:27
*/
object WordCount {
def main(args: Array[String]): Unit = {
//1.读取配置
val sparkConf = new SparkConf().setAppName("WordCount")
//2.获取到SparkContext
val sc = new SparkContext(sparkConf)
//3.执行操作
sc.textFile(args(0)).flatMap(_.split(" ")).map((_, 1)).reduceByKey(_ + _, 1).sortBy(_._2, false).saveAsTextFile(args(1))
//4.关闭连接
sc.stop()
}
}
3.打包插件
<!--放在上面pom文件的pligin下面-->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<archive>
<manifest>
<!--WordCount类名-->
<mainClass>WordCount</mainClass>
</manifest>
</archive>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
4.创建数据,打包完,导入包
[root@hadoop ~]# cd /usr/input
[root@hadoop input]# ls
WordCount.jar
[root@hadoop input]# vim wc.txt
java hadoop java hadoop
php hadoop scala scala
python java hive java
5.集群测试(在包的路径下输入)
hdfs的方式:
spark-submit --class WordCount --master yarn WordCount.jar hdfs://192.168.17.151:9000/wc.txt hdfs://192.168.17.151:9000/out
本地方式:
spark-submit --class WordCount --master yarn WordCount.jar file:///usr/input/word.txt hdfs://192.168.17.151:9000/0608
6.查看结果
[root@hadoop input]# hdfs dfs -cat /out/part-00000
(java,4)
(hadoop,3)
(scala,2)
(hive,1)
(php,1)
(python,1)
二、远程调用Spark
1.启动Spark下的start-all.sh
Jps查看进程:
2.导入依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>0607</artifactId>
<version>1.0-SNAPSHOT</version>
<properties>
<encoding>UTF-8</encoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<scala.version>2.11.11</scala.version>
<spark.version>2.1.1</spark.version>
<hadoop.version>2.7.3</hadoop.version>
</properties>
<dependencies>
<!--依赖Scala语言-->
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<!--SparkCore依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- spark-streaming-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!--SparkSQL依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!--SparkSQL+ Hive依赖-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-hive-thriftserver_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- SparkMlLib机器学习模块,里面有ALS推荐算法-->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.7.3</version>
</dependency>
<dependency>
<groupId>com.hankcs</groupId>
<artifactId>hanlp</artifactId>
<version>portable-1.7.7</version>
</dependency>
</dependencies>
<build>
<!-- src/main/scala路径 -->
<sourceDirectory>src/main/scala</sourceDirectory>
<plugins>
<!-- 指定编译java的插件 -->
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.0</version>
</plugin>
<!-- 指定编译scala的插件 -->
<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.2</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer
implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass></mainClass>
</transformer>
</transformers>
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>
3.编写代码
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
/**
* @program: IntelliJ IDEA
* @description: ming
* @create: 2022-06-08 19:54
*/
object sparkTest {
def main(args: Array[String]): Unit = {
//1.创建sparkConf
val sparkConf = new SparkConf().setMaster("spark://192.168.17.151:7077").setAppName("WordCount")
//2.创建sparkContext
val sc = new SparkContext(sparkConf)
//3.读取数据
var rdd0:RDD[String] = sc.textFile("hdfs://192.168.17.151:9000/word.txt")
//4.拆分数据
var rdd1:RDD[String] = rdd0.flatMap(_.split(" "))
//5.map
var rdd2:RDD[(String,Int)] = rdd1.map((_,1))
//6.
var rdd3:RDD[(String,Int)] = rdd2.reduceByKey(_+_).sortBy(_._2, false)
//7.转数组
var result:Array[(String,Int)] = rdd3.collect()
//8.打印结果
result.foreach(println(_))
}
}
4.打包
5.在把代码加到创建sparkConf的后面
原代码
val sparkConf = new SparkConf().setMaster("spark://192.168.17.151:7077").setAppName("WordCount")
修改后,加上包的路径
val sparkConf = new SparkConf().setMaster("spark://192.168.17.151:7077").setAppName("WordCount").setJars(Seq("D:\worksoft\demo\0607\target\0607-1.0-SNAPSHOT.jar"))
6.运行输出
最后
以上就是真实小鸭子最近收集整理的关于Spark案例之WordCountIntelliJ IDEA一、编写WordCount程序 二、远程调用Spark的全部内容,更多相关Spark案例之WordCountIntelliJ内容请搜索靠谱客的其他文章。
本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
发表评论 取消回复