我是靠谱客的博主 文静项链,最近开发中收集的这篇文章主要介绍自定义 OutputFormat--数据分类输出,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

实现思路:

1、在 MapReduce 中访问外部资源

2、 自定义 OutputFormat,改写其中的 RecordWriter,改写具体输出数据的方法 write()

package mapreduce.format.outputformat;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class MultipleOutputMR {
	public static void main(String[] args) throws Exception {
		
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(MultipleOutputMR.class);
		
		job.setMapperClass(MultipleOutputMRMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(NullWritable.class);
//		自定义OutputFormat组件
		job.setOutputFormatClass(LongOutputFormat.class);
		
		FileInputFormat.setInputPaths(job, args[0]);
		
		Path outPath = new Path(args[1]); 
		FileSystem fs = FileSystem.get(conf);
		if(fs.exists(outPath)){
			fs.delete(outPath,true);
		}
		FileOutputFormat.setOutputPath(job, outPath);
		
		boolean waitForCompletion = job.waitForCompletion(true);
		System.exit(waitForCompletion ? 0 : 1);
	
	}
	
	private static class MultipleOutputMRMapper extends Mapper<LongWritable, Text,	Text, NullWritable>{


		@Override
		protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context)
				throws IOException, InterruptedException {
//			value
//			参考次数大于7次算合格
			String[] splits = value.toString().split("t");
			if(splits.length > 9){
				context.write(new Text("1::" + value.toString()), NullWritable.get());
			}else{
				context.write(new Text("2::" + value.toString()), NullWritable.get());
			}	
			
		}
			
		
	}	

}

自定义OutputFormat组件:

package mapreduce.format.outputformat;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class LongOutputFormat extends FileOutputFormat<Text,NullWritable>{

	@Override
	public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job)
			throws IOException, InterruptedException {

//		通过方法的参数job对象能获取Configuration
		Configuration configuration = job.getConfiguration();
//		通过Configuration对象能获取文件系统对象FileSystem
		FileSystem fs = FileSystem.get(configuration);
		
		Path p1 = new Path("");
		Path p2 = new Path("");
		
//		通过文件系统对象能获取输出流
		FSDataOutputStream out1 = fs.create(p1);
		FSDataOutputStream out2 = fs.create(p2);
		
//		通过构造方法传入MyRecordWriter中write方法所需要往外写数据的输出流out1 和 out2
		return new MyRecordWriter(out1, out2);
		
	}
	
	static class MyRecordWriter extends RecordWriter<Text,NullWritable>{

		FSDataOutputStream fsdout = null;
		FSDataOutputStream fsdout1 = null;
		
		public MyRecordWriter(FSDataOutputStream fsdout, FSDataOutputStream fsdout1) {
			super();
			this.fsdout = fsdout;
			this.fsdout1 = fsdout1;
		}

//		write方法的逻辑是我们自定义的,如果记录中含有1,表示写往第一个文件,那就通过一个输出流fsdout
//		如果记录中含有2,则表示写往第二个文件,则通过输出流fsdout1来往目的地写
		@Override
		public void write(Text key, NullWritable value) throws IOException, InterruptedException {
			
			String[] strs = key.toString().split("::");
			if(strs[0].equals("1")){
				fsdout.write((strs[1] + "n").getBytes());
			}else{
				fsdout1.write((strs[1] + "n").getBytes());
			}
			
		}

		@Override
		public void close(TaskAttemptContext context) throws IOException, InterruptedException {

			IOUtils.closeStream(fsdout);
			IOUtils.closeStream(fsdout1);

		}
		
	}
	
}

例如:

// 参考次数大于 7 次算合格

package mapreduce.format.outputformat;


import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class ScoreOutputFormatMR extends Configured implements Tool {

//	这个run方法就相当于Driver
	@Override
	public int run(String[] args) throws Exception {

		Configuration conf = new Configuration();
		conf.set("fs.defaultFS", "hdfs://hadoop01:9000");
		System.setProperty("HADOOP_USER_NAME", "hadoop");
		Job job = Job.getInstance(conf);
		
		job.setMapperClass(ScoreOutputFormatMRMapper.class);
		job.setMapOutputKeyClass(Text.class);
		job.setMapOutputValueClass(NullWritable.class);

		job.setNumReduceTasks(0);
		
//		这就是默认的输入输出组件
		job.setInputFormatClass(TextInputFormat.class);
		
//		这是默认往外输出数据的组件
//		job.setOutputFormatClass(TextOutputFormat.class);
		
		job.setOutputFormatClass(MyScoreOutputFormat.class);
		
		FileInputFormat.setInputPaths(job, new Path(args[0]));
		Path output = new Path(args[1]);
		FileSystem fs = FileSystem.get(conf);
		if(fs.exists(output)){
			fs.delete(output,true);
		}
		FileOutputFormat.setOutputPath(job, output);
		
		boolean status = job.waitForCompletion(true);
		return status ? 0 : 1;
		
	}

	public static void main(String[] args) throws Exception {
		
		int run = ToolRunner.run(new ScoreOutputFormatMR(),args);
		System.exit(run);
		
	}
	
	private static class ScoreOutputFormatMRMapper extends Mapper<LongWritable, Text, Text, NullWritable>{

		@Override
		protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, NullWritable>.Context context)
				throws IOException, InterruptedException {

			String[] split = value.toString().split(",");
			if(split.length - 2 >= 6){
				context.write(new Text("1::" + value.toString()), NullWritable.get());
			}else{
				context.write(new Text("2::" + value.toString()), NullWritable.get());
			}
	
		}
			
	}
	
}

自定义 OutputFormat:

package mapreduce.format.outputformat;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.RecordWriter;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.zookeeper.common.IOUtils;

public class MyScoreOutputFormat extends TextOutputFormat<Text,NullWritable>{

	@Override
	public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job)
			throws IOException, InterruptedException {
//		通过方法的参数job对象能获取Configuration
		Configuration configuration = job.getConfiguration();
//		通过Configuration对象能获取文件系统对象FileSystem
		FileSystem fs = FileSystem.get(configuration);
		
		Path p1 = new Path("/input/score/outputFormat/output1");
		Path p2 = new Path("/input/score/outputFormat/output2");
		
		if(fs.exists(p1)){
			fs.delete(p1, true);
		}
		if(fs.exists(p2)){
			fs.delete(p2,true);
		}
//		通过文件系统对象能获取输出流
		FSDataOutputStream fsout1 = fs.create(p1);
		FSDataOutputStream fsout2 = fs.create(p2);
		
//		通过构造方法传入MyRecordWriter中write方法所需要往外写数据的输出流out1 和  out2
		return new MyRecordWriter(fsout1,fsout2);
		
	}
	
	private static class MyRecordWriter extends RecordWriter<Text, NullWritable>{

		FSDataOutputStream dout1 = null;
		FSDataOutputStream dout2 = null;
		
		public MyRecordWriter(FSDataOutputStream dout1, FSDataOutputStream dout2) {

			this.dout1 = dout1;
			this.dout2 = dout2;
		}
		
//		write方法的逻辑是我们自定义的,如果记录中含有1,表示写往第一个文件,那就通过一个输出流dout1
//		如果记录中包含有2,则表示写往第二个文件,则通过输出流dout2来往目的地写
			
		@Override
		public void write(Text key, NullWritable value) throws IOException, InterruptedException {

			String[] strs = key.toString().split("::");
			if(strs[0].equals("1")){
				dout1.writeBytes(strs[1] + "n");
			}else{
				dout2.writeBytes(strs[1] + "n");
			}
		}

		@Override
		public void close(TaskAttemptContext context) throws IOException, InterruptedException {
			IOUtils.closeStream(dout1);
			IOUtils.closeStream(dout2);
			
		}
		
	}
	
}


最后

以上就是文静项链为你收集整理的自定义 OutputFormat--数据分类输出的全部内容,希望文章能够帮你解决自定义 OutputFormat--数据分类输出所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(36)

评论列表共有 0 条评论

立即
投稿
返回
顶部