概述
算法描述:
Logistic Regression Algorithm |
---|
初始化
ω
0
{omega _0}
ω0 For t = 0 , 1 , 2 , ⋯ t=0,1,2, cdots t=0,1,2,⋯ 1.计算梯度方向: ∇ E i n ( ω t ) = 1 N ∑ n = 1 N θ ( − y n ω t T x n ) ( − y n x n ) nabla {E_{in}}({omega _t}) = frac{1}{N}sumlimits_{n = 1}^N {theta ( - {y_n}omega _t^T{x_n})( - {y_n}{x_n})} ∇Ein(ωt)=N1n=1∑Nθ(−ynωtTxn)(−ynxn) 2.更新: ω t + 1 ← ω t − η ∇ E i n ( ω t ) {omega _{t + 1}} leftarrow {omega _t} - eta nabla {E_{in}}({omega _t}) ωt+1←ωt−η∇Ein(ωt) Until ∇ E i n ( ω t + 1 ) = 0 nabla {E_{in}}({omega _{t + 1}}) = 0 ∇Ein(ωt+1)=0,或者足够的次数 |
这里的目标函数:
f
(
x
)
=
P
(
+
1
∣
x
)
∈
[
0
,
1
]
f(x) = P( + 1left| x right.) in left[ {0,1} right]
f(x)=P(+1∣x)∈[0,1] ,用于二分类,则当
f
(
x
)
>
0.5
f(x) > 0.5
f(x)>0.5 ,为+1;当
f
(
x
)
<
0.5
f(x) < 0.5
f(x)<0.5 ,为-1。
计算过程:
Logistic Function:
θ ( s ) = e s 1 + e s = 1 1 + e − s theta (s) = frac{{{e^s}}}{{1 + {e^s}}} = frac{1}{{1 + {e^{ - s}}}} θ(s)=1+eses=1+e−s1
图像如下,
该函数的特性:
- 定义域 ( − ∞ , + ∞ ) ( - infty , + infty ) (−∞,+∞)
- 值域 ( 0 , 1 ) (0,1) (0,1)
- 在定义域内是smooth,monotonic,sigmiod的
- θ ( s ) = 1 − θ ( − s ) theta (s) = 1 - theta ( - s) θ(s)=1−θ(−s)
- d θ ( s ) d s = θ ( s ) ( 1 − θ ( s ) ) frac{{dtheta (s)}}{{ds}} = theta (s)(1 - theta (s)) dsdθ(s)=θ(s)(1−θ(s))
logistic函数用在逻辑回归里为,
h
(
x
)
=
1
1
+
exp
(
−
ω
T
x
)
h(x) = frac{1}{{1 + exp ( - {omega ^T}x)}}
h(x)=1+exp(−ωTx)1
下面根据极大似然原理(Maximum Likelihood) 来计算逻辑回归的参数更新式。
现有目标函数如下,
f
(
x
)
=
P
(
+
1
∣
x
)
⇔
P
(
y
∣
x
)
=
{
f
(
x
)
f
o
r
y
=
+
1
1
−
f
(
x
)
f
o
r
y
=
−
1
f(x) = P( + 1left| x right.) Leftrightarrow P(yleft| x right.) = left{ begin{array}{l} f(x){kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} for{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} y = + 1{kern 1pt} \ 1 - f(x){kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} for{kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} y = - 1 end{array} right.
f(x)=P(+1∣x)⇔P(y∣x)={f(x)fory=+11−f(x)fory=−1
假设现在有资料集 D = { ( x 1 , ◯ ) , ( x 2 , × ) , ⋯   , ( x N , × ) } D = { ({x_1},bigcirc ),({x_2}, times ), cdots ,({x_N}, times )} D={(x1,◯),(x2,×),⋯,(xN,×)}。
则通过h产生数据集D的可能性为:
P
(
x
1
)
h
(
x
1
)
×
P
(
x
2
)
(
1
−
h
(
x
2
)
)
×
⋯
×
P
(
x
N
)
(
1
−
h
(
x
N
)
)
P({x_1})h({x_1}) times P({x_2})(1 - h({x_2})) times cdots times P({x_N})(1 - h({x_N}))
P(x1)h(x1)×P(x2)(1−h(x2))×⋯×P(xN)(1−h(xN))
通常由目标函数f产生数据集D的概率是很大的 (极大似然的思想),当
h
≈
f
h approx f
h≈f时,由h产生D的概率也是非常大的,即,
g
≈
arg
max
h
l
i
k
e
l
i
h
o
o
d
(
h
)
g approx mathop {arg max }limits_h {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} likelihood(h)
g≈hargmaxlikelihood(h)
这里
h
(
x
)
=
θ
(
ω
T
x
)
h(x) = theta ({omega ^T}x)
h(x)=θ(ωTx),又有
1
−
h
(
x
)
=
h
(
−
x
)
1 - h(x) = h( - x)
1−h(x)=h(−x),所以,
l
i
k
e
l
i
h
o
o
d
(
h
)
=
P
(
x
1
)
h
(
x
1
)
×
P
(
x
2
)
(
1
−
h
(
x
2
)
)
×
⋯
×
P
(
x
N
)
(
1
−
h
(
x
N
)
)
=
P
(
x
1
)
h
(
x
1
)
×
P
(
x
2
)
h
(
−
x
2
)
×
⋯
×
P
(
x
N
)
h
(
−
x
N
)
=
P
(
x
1
)
h
(
y
1
x
1
)
×
P
(
x
2
)
h
(
y
2
x
2
)
×
⋯
×
P
(
x
N
)
h
(
y
N
x
N
)
begin{array}{l} likelihood(h) = P({x_1})h({x_1}) times P({x_2})(1 - h({x_2})) times \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} cdots times P({x_N})(1 - h({x_N}))\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = P({x_1})h({x_1}) times P({x_2})h( - {x_2}) times \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} cdots times P({x_N})h( - {x_N})\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = P({x_1})h({y_1}{x_1}) times P({x_2})h({y_2}{x_2}) times \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} cdots times P({x_N})h({y_N}{x_N}) end{array}
likelihood(h)=P(x1)h(x1)×P(x2)(1−h(x2))×⋯×P(xN)(1−h(xN))=P(x1)h(x1)×P(x2)h(−x2)×⋯×P(xN)h(−xN)=P(x1)h(y1x1)×P(x2)h(y2x2)×⋯×P(xN)h(yNxN)
对于每个不同的h而言,
P
(
x
i
)
P({x_i})
P(xi)都是不变的,那么就有,
l
i
k
e
l
i
h
o
o
d
(
h
)
∝
∏
n
=
1
N
h
(
y
n
x
n
)
likelihood(h) propto prodlimits_{n = 1}^N {h({y_n}{x_n})}
likelihood(h)∝n=1∏Nh(ynxn)
用
ω
omega
ω表示h,有,
max
ω
l
i
k
e
l
i
h
o
o
d
(
h
)
∝
∏
n
=
1
N
θ
(
y
n
ω
T
x
n
)
mathop {max }limits_omega likelihood(h) propto prodlimits_{n = 1}^N {theta ({y_n}{omega ^T}{x_n})}
ωmaxlikelihood(h)∝n=1∏Nθ(ynωTxn)
取对数 (变连乘为连加),加负号 (变最大化为最小化),再取均值,有,
min
ω
1
N
∑
n
=
1
N
−
ln
θ
(
y
n
ω
T
x
n
)
=
min
ω
1
N
∑
n
=
1
N
ln
(
1
+
exp
(
−
y
n
ω
T
x
n
)
)
=
min
ω
1
N
∑
n
=
1
N
e
r
r
(
ω
,
x
n
,
y
n
)
⎵
E
i
n
(
ω
)
begin{array}{l} mathop {min }limits_omega frac{1}{N}sumlimits_{n = 1}^N { - ln theta ({y_n}{omega ^T}{x_n})} \ = mathop {min }limits_omega frac{1}{N}sumlimits_{n = 1}^N {ln (1 + exp ( - {y_n}{omega ^T}{x_n}))} \ {kern 1pt} = mathop {min }limits_omega frac{1}{N}underbrace {sumlimits_{n = 1}^N {err(omega ,{x_n},{y_n})} }_{{E_{in}}(omega )} end{array}
ωminN1n=1∑N−lnθ(ynωTxn)=ωminN1n=1∑Nln(1+exp(−ynωTxn))=ωminN1Ein(ω)
n=1∑Nerr(ω,xn,yn)
上式,就是逻辑回归里的误差衡量方式——交叉熵误差(Cross-Entropy Error),即,
e
r
r
(
ω
,
x
,
y
)
=
ln
(
1
+
exp
(
−
y
ω
x
)
err(omega ,x,y) = ln (1 + exp ( - yomega x)
err(ω,x,y)=ln(1+exp(−yωx)
根据凸函数的最小化原理,令
∇
E
i
n
(
ω
)
=
0
nabla {E_{in}}(omega ) = 0
∇Ein(ω)=0,下面计算梯度,
E
i
n
(
ω
)
=
1
N
∑
n
=
1
N
ln
(
1
+
exp
(
−
y
n
ω
T
x
n
⏞
◯
)
⎵
Δ
)
begin{array}{l} {E_{in}}(omega ) = frac{1}{N}sumlimits_{n = 1}^N {ln (underbrace {1 + exp (overbrace { - {y_n}{omega ^T}{x_n}}^bigcirc )}_Delta )} \ {kern 1pt} end{array}
Ein(ω)=N1n=1∑Nln(Δ
1+exp(−ynωTxn
◯))
∂ E i n ( ω ) ∂ ω i = 1 N ∑ n = 1 N ( ∂ ln ( Δ ) ∂ Δ ) ( ∂ ( 1 + exp ( ◯ ) ) ∂ ◯ ) ( ∂ − y n ω T x n ∂ ω i ) = 1 N ∑ n = 1 N ( 1 Δ ) ( exp ( ◯ ) ) ( − y n x n , i ) = 1 N ∑ n = 1 N ( exp ( ◯ ) 1 + exp ( ◯ ) ) ( − y n x n , i ) = 1 N ∑ n = 1 N θ ◯ ( − y n x n , i ) begin{array}{l} frac{{partial {E_{in}}(omega )}}{{partial {omega _i}}} = frac{1}{N}sumlimits_{n = 1}^N {(frac{{partial ln (Delta )}}{{partial Delta }})} (frac{{partial (1 + exp (bigcirc ))}}{{partial bigcirc }})(frac{{partial - {y_n}{omega ^T}{x_n}}}{{partial {omega _i}}})\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = frac{1}{N}sumlimits_{n = 1}^N {(frac{1}{Delta })} (exp (bigcirc ))( - {y_n}{x_{n,i}})\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = frac{1}{N}sumlimits_{n = 1}^N {(frac{{exp (bigcirc )}}{{1{rm{ + }}exp (bigcirc )}})} ( - {y_n}{x_{n,i}})\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = frac{1}{N}sumlimits_{n = 1}^N {theta bigcirc } ( - {y_n}{x_{n,i}}) end{array} ∂ωi∂Ein(ω)=N1n=1∑N(∂Δ∂ln(Δ))(∂◯∂(1+exp(◯)))(∂ωi∂−ynωTxn)=N1n=1∑N(Δ1)(exp(◯))(−ynxn,i)=N1n=1∑N(1+exp(◯)exp(◯))(−ynxn,i)=N1n=1∑Nθ◯(−ynxn,i)
即,
∇
E
i
n
(
ω
)
=
1
N
∑
n
=
1
N
θ
(
−
y
n
ω
T
x
n
)
(
−
y
n
x
n
)
=
0
nabla {E_{in}}(omega ) = frac{1}{N}sumlimits_{n = 1}^N {theta ( - {y_n}{omega ^T}{x_n})( - {y_n}{x_n})} = 0
∇Ein(ω)=N1n=1∑Nθ(−ynωTxn)(−ynxn)=0
上式不存在闭式解(closed-form solution),因为,把这里的
θ
(
⋅
)
theta ( cdot )
θ(⋅)看作是
−
y
n
x
n
- {y_n}{x_n}
−ynxn的权重,则整个梯度式子可看作是以
θ
(
⋅
)
theta ( cdot )
θ(⋅)为权重的关于
−
y
n
x
n
- {y_n}{x_n}
−ynxn的加权平均,所以只有当所有的
θ
(
⋅
)
=
0
theta ( cdot ) = 0
θ(⋅)=0成立时,
∇
E
i
n
(
ω
)
=
0
nabla {E_{in}}(omega ) = 0
∇Ein(ω)=0。
1.所有
θ
(
⋅
)
=
0
theta ( cdot ) = 0
θ(⋅)=0 ,当且仅当
y
n
ω
T
x
n
≫
0
{y_n}{omega ^T}{x_n} gg 0
ynωTxn≫0 ,即该数据集线性可分,一旦数据集线性不可分,则上述梯度就不可能为0
2.权重 :
θ
(
⋅
)
=
0
theta ( cdot ) = 0
θ(⋅)=0是关于
ω
omega
ω的一个非线性方程,不容易得出闭式解
所以,这里的参数更新采用的是迭代优化解(Iterative Optimization),用梯度下降法求解函数的最小化问题,
ω
t
+
1
←
ω
t
−
η
∇
E
i
n
(
ω
t
)
{omega _{t + 1}} leftarrow {omega _t} - eta nabla {E_{in}}({omega _t})
ωt+1←ωt−η∇Ein(ωt)
实际应用:
数据特征集D为:
x
=
[
1
1
⋯
1
x
11
x
21
⋯
x
n
1
x
12
x
22
⋯
x
n
2
⋮
⋮
⋮
⋮
x
1
d
x
2
d
⋯
x
n
d
]
⎵
(
d
+
1
)
×
N
x = underbrace {left[ {begin{array}{} 1&1& cdots &1\ {{x_{11}}}&{{x_{21}}}& cdots &{x{}_{n1}}\ {{x_{12}}}&{{x_{22}}}& cdots &{x{}_{n2}}\ vdots & vdots & vdots & vdots \ {{x_{1d}}}&{x{}_{2d}}& cdots &{x{}_{nd}} end{array}} right]}_{(d + 1) times N}
x=(d+1)×N
⎣⎢⎢⎢⎢⎢⎡1x11x12⋮x1d1x21x22⋮x2d⋯⋯⋯⋮⋯1xn1xn2⋮xnd⎦⎥⎥⎥⎥⎥⎤
对应的标签集为:
y = [ y 1 y 2 ⋮ y n ] ⎵ N × 1 y = underbrace {left[ {begin{array}{} {{y_1}}\ {{y_2}}\ vdots \ {{y_n}} end{array}} right]}_{N times 1} y=N×1 ⎣⎢⎢⎢⎡y1y2⋮yn⎦⎥⎥⎥⎤
则梯度的计算如下:
A = θ ( − y n . ∗ ( ω T x n ⏞ 1 × N ) ) ⎵ 1 × N b = − y n . ∗ x n ⎵ ( d + 1 ) × N begin{array}{l} A = underbrace {theta ( - {y_n}. * (overbrace {{omega ^T}{x_n}}^{1 times N}))}_{1 times N}\ b = underbrace { - {y_n}. * {x_n}}_{(d + 1) times N} end{array} A=1×N θ(−yn.∗(ωTxn 1×N))b=(d+1)×N −yn.∗xn
∇ E i n ( ω ) = A 1 ⎵ ( 常 数 ) b 1 ⎵ ( d + 1 ) × 1 + A 2 b 2 + ⋯ + A N b N = b ⎵ ( d + 1 ) × N [ A 1 A 2 ⋮ A N ] ⎵ N × 1 begin{array}{l} nabla {E_{in}}(omega ) = underbrace {{A_1}}_{(常数)}underbrace {{b_1}}_{(d + 1) times 1} + {A_2}{b_2} + cdots + {A_N}{b_N}\ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = underbrace b_{(d + 1) times N}underbrace {left[ {begin{array}{} {{A_1}}\ {{A_2}}\ vdots \ {{A_N}} end{array}} right]}_{N times 1} end{array} ∇Ein(ω)=(常数) A1(d+1)×1 b1+A2b2+⋯+ANbN=(d+1)×N bN×1 ⎣⎢⎢⎢⎡A1A2⋮AN⎦⎥⎥⎥⎤
实际应用中,一般用线性回归求初值 ,然后再用PLA/pocket/logistic regression等方法,一般logistic regression效果要好于pocket。
随机梯度(Stochastic Gradient Descent, SGD)的使用:
以上计算的梯度的时候,是计算了在所有点处的梯度和然后再平均,这里的平均的概念可以用随机的一个梯度值来近似代替,即,
ω
t
+
1
←
ω
t
+
η
θ
(
−
y
n
ω
t
T
x
n
)
(
y
n
x
n
)
⎵
−
∇
e
r
r
(
ω
t
,
x
n
,
y
n
)
{omega _{t + 1}} leftarrow {omega _t} + eta underbrace {theta ( - {y_n}omega _t^T{x_n})({y_n}{x_n})}_{ - nabla err({omega _t},{x_n},{y_n})}
ωt+1←ωt+η−∇err(ωt,xn,yn)
θ(−ynωtTxn)(ynxn)
随机梯度的使用体现了一个在线学习思想,即每来一个数据,就可以进行一次参数更新。
Pros: 计算代价低,适合数据量大以及在线学习的场景
Cons: 不稳定。
最后
以上就是大意手链为你收集整理的机器学习——逻辑回归(Logistic Regression)的全部内容,希望文章能够帮你解决机器学习——逻辑回归(Logistic Regression)所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复