我是靠谱客的博主 爱笑洋葱,最近开发中收集的这篇文章主要介绍caret包,特征选择Recursive Feature Elimination,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

http://www.cybaea.net/Journal/2010/11/16/Feature-selection-Using-the-caret-package/

http://topepo.github.io/caret/recursive-feature-elimination.html

Recursive Feature Elimination

Backwards Selection



In caret, Algorithm 1 is implemented by the function rfeIter. The resampling-based Algorithm 2 is in the rfe function. Given the potential selection bias issues, this document focuses on rfe. There are several arguments:

For a specific model, a set of functions must be specified in rfeControl$functions. Sections below has descriptions of these sub-functions. There are a number of pre-defined sets of functions for several models, including: linear regression (in the object lmFuncs), random forests (rfFuncs), naive Bayes (nbFuncs), bagged trees (treebagFuncs) and functions that can be used with caret’s train function (caretFuncs). The latter is useful if the model has tuning parameters that must be determined at each iteration.



library("caret")

library("randomForest")
library("ipred")
library("gbm")
install.packages("multicore")
set.seed(1)
n.var <- 20
n.obs <- 200
x <- data.frame(V = matrix(rnorm(n.var*n.obs), n.obs, n.var))
n.dep <- floor(n.var/5)
cat( "Number of dependent variables is", n.dep, "n")
m <- diag(n.dep:1)
y.1 <- factor( ifelse( x$V.1 >= 0, 'A', 'B' ) )
y.2 <- ifelse( rowSums(as.matrix(x[, 1:n.dep]) %*% m) >= 0, "A", "B" )
y.2 <- factor(y.2)
y.3 <- factor(rowSums(x[, 1:n.dep] >= 0))
y.4 <- factor(rowSums(x[, 1:n.dep] >= 0) %% 2)


control <- rfeControl(functions = rfFuncs, method = "boot", verbose = FALSE,
                      returnResamp = "final", number = 50)


if ( require("multicore", quietly = TRUE, warn.conflicts = FALSE) ) {
  control$workers <- multicore:::detectCores()
  control$computeFunction <- mclapply
  control$computeArgs <- list(mc.preschedule = FALSE, mc.set.seed = FALSE)
}


sizes <- 1:6


## Use randomForest for prediction
profile.1 <- rfe(x, y.1, sizes = sizes, rfeControl = control)
cat( "rf     : Profile 1 predictors:", predictors(profile.1), fill = TRUE )
profile.2 <- rfe(x, y.2, sizes = sizes, rfeControl = control)
cat( "rf     : Profile 2 predictors:", predictors(profile.2), fill = TRUE )
profile.3 <- rfe(x, y.3, sizes = sizes, rfeControl = control)
cat( "rf     : Profile 3 predictors:", predictors(profile.3), fill = TRUE )
profile.4 <- rfe(x, y.4, sizes = sizes, rfeControl = control)
cat( "rf     : Profile 4 predictors:", predictors(profile.4), fill = TRUE )



最后

以上就是爱笑洋葱为你收集整理的caret包,特征选择Recursive Feature Elimination的全部内容,希望文章能够帮你解决caret包,特征选择Recursive Feature Elimination所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(55)

评论列表共有 0 条评论

立即
投稿
返回
顶部