我是靠谱客的博主 贪玩香水,最近开发中收集的这篇文章主要介绍机器学习多分类,情感分析,觉得挺不错的,现在分享给大家,希望可以做个参考。

概述

将多分类转换为二分类来进行相应的计算

相关代码:

1. LogisticRegression

 
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
data_iris = datasets.load_iris()
x, y = data_iris.data, data_iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,random_state = 0)
# 使用multiclass的OvO多分类策略,分类器使用LogisticRegression
model = OneVsOneClassifier(LogisticRegression(C=1.0, tol=1e-6))
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))
============================================
0.9555555555555556
# 使用multiclass的OvR多分类策略,分类器使用LogisticRegression
model = OneVsRestClassifier(LogisticRegression(C=1.0, tol=1e-6))
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))
============================================
0.8888888888888888

2. SVM

SVC

 
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn import svm
from sklearn.metrics import accuracy_score
data_iris = datasets.load_iris()
x, y = data_iris.data, data_iris.target
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3,random_state = 0)
# 使用multiclass的OvO多分类策略,分类器使用SVM
model = OneVsOneClassifier(svm.SVC())
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))
============================================
0.9555555555555556
# 使用multiclass的OvR多分类策略,分类器使用SVM
model = OneVsRestClassifier(svm.SVC())
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))
============================================
0.8888888888888888

LinearSVC

 
# 使用multiclass的OvR多分类策略,分类器使用SVM
model = OneVsRestClassifier(svm.LinearSVC())
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

3. Decision Tree

 
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

4. Random Forest

 
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_jobs=2)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

5. AdaBoost

 
from sklearn.ensemble import AdaBoostClassifier
model = AdaBoostClassifier(DecisionTreeClassifier(),
algorithm="SAMME",
n_estimators=200,
learning_rate=0.5)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

6. 朴素贝叶斯

MultinomialNB

 
from sklearn.naive_bayes import MultinomialNB, GaussianNB
model = MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True)
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

GaussianNB

 
model = GaussianNB()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

BernoulliNB

 
model = BernoulliNB()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

7. KNN

 
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

8. GradientBoosting

 
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

PYTHON 复制 全屏

9. XGBoost

 
from xgboost.sklearn import XGBClassifier
model = XGBClassifier()
model.fit(x_train, y_train)
y_pred = model.predict(x_test)
print(accuracy_score(y_test, y_pred))

最后

以上就是贪玩香水为你收集整理的机器学习多分类,情感分析的全部内容,希望文章能够帮你解决机器学习多分类,情感分析所遇到的程序开发问题。

如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。

本图文内容来源于网友提供,作为学习参考使用,或来自网络收集整理,版权属于原作者所有。
点赞(39)

评论列表共有 0 条评论

立即
投稿
返回
顶部