概述
看《***与画家》讲到"防止垃圾邮件的一种方法",觉得很适合用来表述数学公式与机器学习之间的关系。涉及到机器学习的数学公式比较简单,概率论基础教程都会讲到。解决的问题也很典型: 垃圾邮件的识别。
防止垃圾邮件有很多种方法,最直观的一种就是“规则”, 各种if-else的条件。这种方法能够解决一个问题,但是解决不了一类问题。而且,这个规则的制定需要非常熟悉业务,好在通常我们面临的业务问题是很垂直的, 通过规则, 也能够解决问题。毕竟解决问题才是业务的核心诉求。
接下来, 业务随着业务的发展, 规则越来越复杂, 我们维护起来也越来越吃力。 而且使用规则,是被动式的解决问题,用户体验也不好。 这个时候,新的方法该上场了,这个方法就是 “统计学方法”。 因为接触的规则越多, 我们会慢慢发现邮件中出现某个关键词, 只能表示邮件有可能是垃圾邮件。 这个可能性如何度量呢? 用贝叶斯方法。
贝叶斯方法的思路属于逆向思维。 通常概率论解决的问题是“已知邮件是垃圾邮件,问各个单词出现在垃圾邮件中的概率”, 贝叶斯方法解决的问题是“已知邮件内容, 问当前邮件属于垃圾邮件的概率".
理解贝叶斯公式不难,其基础点有"条件概率", "联合概率"。 贝叶斯公式的推导也很简单:
P(AB) = P(B)*P(A|B)
P(AB) = P(A)*P(B|A)
有:
P(B)*P(A|B)=P(A)*P(B|A)
所以
P(A|B) = P(A)*P(B|A) / P(B)
虽然机器学习最忌讳的就是套公式,但是为了方便理解, 我们先套个公式:
P(垃圾邮件|邮件内容) 表示 ”在已知邮件内容,邮件属于垃圾邮件的概率“
P(垃圾邮件|邮件内容) = P(垃圾邮件) * P(邮件内容|垃圾邮件) / P(邮件内容)
等式右边的概率是可以通过样本计算出来的。
现在解决问题的方法有了,数学公式也有了, 是不是问题就解决了呢? 显然不是。我们只是完成了模型选择而已。通过《***与画家》看这个模型是如何落地的。
-
选择样本: 作者选取了4000封正常邮件和4000封垃圾邮件。
-
选择特征:字母、阿拉伯数字、破折号、撇号、美元符号作为“实义标识”
-
统计次数: 计算了每个实义标识在两个邮件组出现的次数
-
确定计算公式。 这里其实就是整篇文章的精华了。a. 作者没有完完全全套用贝叶斯公式; b. 作者分别在token和邮件两个维度用了贝叶斯思想。这才是难能可贵的。
-
特征选择: 作者选取了top15的特征, 而非邮件全部的token.
- 结果选取: 通常我们选取结果是以0.5为界,而作者以0.9为界。
如果说通常意义上的编程是一维的,那么机器学习的编程就是二维的。通常的工程问题是非黑即白,要么可用,要么是有Bug不可用。而机器学习在工程上的落地,更核心的关注点在于算法效果好不好和算法效果能不能更好。算法效果好不好,核心点在于数学模型, 其次在于怎么用好数学模型。 《***与画家》用简明的例子说明他是怎么用数学模型解决业务问题的。
引申一下:这个问题属于典型的二分类问题。像垃圾邮件,垃圾评论, 评论的情感判断, 是否目标用户,是否推荐用户... 很多问题都可以归类到二分类问题。如果把"垃圾邮件的识别"抽象到分类问题,整个解决问题的思路就又开阔了很多。
最后
以上就是喜悦外套为你收集整理的从贝叶斯公式到垃圾邮件的识别的全部内容,希望文章能够帮你解决从贝叶斯公式到垃圾邮件的识别所遇到的程序开发问题。
如果觉得靠谱客网站的内容还不错,欢迎将靠谱客网站推荐给程序员好友。
发表评论 取消回复